Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892274903> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2892274903 abstract "Neuron segmentation is an important task for automatic analyses of brain images that are of huge volume. Previous methods for neuron segmentation rely on handcrafted image features, and have difficulty in coping with high-resolution, low signal-to-noise-ratio brain images. Convolutional neural network (CNN) has achieved remarkable success in natural image segmentation, but CNN requires accurately labeled data for training that are difficult to achieve on brain images of huge volume. In this paper, we present a weakly supervised learning strategy to deal with the inaccurate training data problem, and thus adopt 3D CNN to perform automatic soma segmentation from brain images. We test our method on our own collected mouse brain images that are of single-neuron resolution, and results show that 3D CNN-based method outperforms the traditional methods by a significant margin." @default.
- W2892274903 created "2018-09-27" @default.
- W2892274903 creator A5003217535 @default.
- W2892274903 creator A5004574630 @default.
- W2892274903 creator A5008612863 @default.
- W2892274903 creator A5015814838 @default.
- W2892274903 creator A5056036725 @default.
- W2892274903 creator A5058030039 @default.
- W2892274903 creator A5069946004 @default.
- W2892274903 creator A5088031350 @default.
- W2892274903 date "2018-10-01" @default.
- W2892274903 modified "2023-09-23" @default.
- W2892274903 title "3D Cnn-Based Soma Segmentation from Brain Images at Single-Neuron Resolution" @default.
- W2892274903 cites W1901129140 @default.
- W2892274903 cites W1903029394 @default.
- W2892274903 cites W1997013306 @default.
- W2892274903 cites W2123360522 @default.
- W2892274903 cites W2155813740 @default.
- W2892274903 cites W2163605009 @default.
- W2892274903 cites W2169750224 @default.
- W2892274903 cites W2256981962 @default.
- W2892274903 cites W2343172899 @default.
- W2892274903 cites W2493190410 @default.
- W2892274903 cites W2547234448 @default.
- W2892274903 cites W2608641923 @default.
- W2892274903 cites W2613041730 @default.
- W2892274903 cites W2613718673 @default.
- W2892274903 cites W2626299884 @default.
- W2892274903 cites W2741891296 @default.
- W2892274903 cites W2963417518 @default.
- W2892274903 cites W2963446712 @default.
- W2892274903 doi "https://doi.org/10.1109/icip.2018.8451389" @default.
- W2892274903 hasPublicationYear "2018" @default.
- W2892274903 type Work @default.
- W2892274903 sameAs 2892274903 @default.
- W2892274903 citedByCount "6" @default.
- W2892274903 countsByYear W28922749032019 @default.
- W2892274903 countsByYear W28922749032020 @default.
- W2892274903 countsByYear W28922749032021 @default.
- W2892274903 crossrefType "proceedings-article" @default.
- W2892274903 hasAuthorship W2892274903A5003217535 @default.
- W2892274903 hasAuthorship W2892274903A5004574630 @default.
- W2892274903 hasAuthorship W2892274903A5008612863 @default.
- W2892274903 hasAuthorship W2892274903A5015814838 @default.
- W2892274903 hasAuthorship W2892274903A5056036725 @default.
- W2892274903 hasAuthorship W2892274903A5058030039 @default.
- W2892274903 hasAuthorship W2892274903A5069946004 @default.
- W2892274903 hasAuthorship W2892274903A5088031350 @default.
- W2892274903 hasConcept C119857082 @default.
- W2892274903 hasConcept C124504099 @default.
- W2892274903 hasConcept C153180895 @default.
- W2892274903 hasConcept C154945302 @default.
- W2892274903 hasConcept C15744967 @default.
- W2892274903 hasConcept C169760540 @default.
- W2892274903 hasConcept C2779617337 @default.
- W2892274903 hasConcept C31972630 @default.
- W2892274903 hasConcept C41008148 @default.
- W2892274903 hasConcept C774472 @default.
- W2892274903 hasConcept C81363708 @default.
- W2892274903 hasConcept C89600930 @default.
- W2892274903 hasConceptScore W2892274903C119857082 @default.
- W2892274903 hasConceptScore W2892274903C124504099 @default.
- W2892274903 hasConceptScore W2892274903C153180895 @default.
- W2892274903 hasConceptScore W2892274903C154945302 @default.
- W2892274903 hasConceptScore W2892274903C15744967 @default.
- W2892274903 hasConceptScore W2892274903C169760540 @default.
- W2892274903 hasConceptScore W2892274903C2779617337 @default.
- W2892274903 hasConceptScore W2892274903C31972630 @default.
- W2892274903 hasConceptScore W2892274903C41008148 @default.
- W2892274903 hasConceptScore W2892274903C774472 @default.
- W2892274903 hasConceptScore W2892274903C81363708 @default.
- W2892274903 hasConceptScore W2892274903C89600930 @default.
- W2892274903 hasLocation W28922749031 @default.
- W2892274903 hasOpenAccess W2892274903 @default.
- W2892274903 hasPrimaryLocation W28922749031 @default.
- W2892274903 hasRelatedWork W1669643531 @default.
- W2892274903 hasRelatedWork W2342591535 @default.
- W2892274903 hasRelatedWork W2415731916 @default.
- W2892274903 hasRelatedWork W2765643166 @default.
- W2892274903 hasRelatedWork W2980471673 @default.
- W2892274903 hasRelatedWork W2994347668 @default.
- W2892274903 hasRelatedWork W2995422253 @default.
- W2892274903 hasRelatedWork W3095523211 @default.
- W2892274903 hasRelatedWork W3198323177 @default.
- W2892274903 hasRelatedWork W3217303622 @default.
- W2892274903 isParatext "false" @default.
- W2892274903 isRetracted "false" @default.
- W2892274903 magId "2892274903" @default.
- W2892274903 workType "article" @default.