Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892287369> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2892287369 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018A fault-detection workflow using deep learning and image processingAuthors: Tao ZhaoPradip MukhopadhyayTao ZhaoGeophysical InsightsSearch for more papers by this author and Pradip MukhopadhyayGeophysical InsightsSearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2997005.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWithin the last a couple of years, deep learning techniques, represented by convolutional neural networks (CNNs), have been applied to fault detection problems on seismic data with impressive outcome. As is true for all supervised learning techniques, the performance of a CNN fault detector highly depends on the training data, and post-classification regularization may greatly improve the result. Sometimes, a pure CNN-based fault detector that works perfectly on synthetic data may not perform well on field data. In this study, we investigate a fault detection workflow using both CNN and directional smoothing/sharpening. Applying both on a realistic synthetic fault model based on the SEAM (SEG Advanced Modeling) model and also field data from the Great South Basin, offshore New Zealand, we demonstrate that the proposed fault detection workflow can perform well on challenging synthetic and field data.Presentation Date: Tuesday, October 16, 2018Start Time: 8:30:00 AMLocation: 204B (Anaheim Convention Center)Presentation Type: OralKeywords: faults, machine learning, neural networksPermalink: https://doi.org/10.1190/segam2018-2997005.1FiguresReferencesRelatedDetailsCited byFault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing14 February 2023 | Remote Sensing, Vol. 15, No. 4Ensemble Deep Learning-Based Porosity Inversion From Seismic AttributesIEEE Access, Vol. 11A fuzzy entropy, Contourlet based automatic fault detection24 January 2022 | Exploration Geophysics, Vol. 53, No. 6Multiscale fracture prediction technique via deep learning, seismic gradient disorder, and aberrance: Applied to tight sandstone reservoirs in the Hutubi block, southern Junggar BasinZhiguo Cheng, Long Bian, Haidong Chen, Xiaotao Wang, Di Ye, and Luming He11 August 2022 | Interpretation, Vol. 10, No. 4High-resolution seismic faults interpretation based on adversarial neural networks with a regularization techniqueTianqi Wang and Yanfei Wang8 September 2022 | GEOPHYSICS, Vol. 87, No. 6Applying machine learning technologies in the Niobrara Formation, DJ Basin, to quickly produce an integrated structural and stratigraphic seismic classification volume calibrated to wellsCarolan Laudon, Jie Qi, and Yin-Kai Wang10 October 2022Fault surface extraction from a global perspectiveCheng Zhou, Ruoshui Zhou, Xianglin Zhan, Hanpeng Cai, Xingmiao Yao, and Guangmin Hu13 July 2022 | GEOPHYSICS, Vol. 87, No. 5Seismic data augmentation for automatic faults picking using deep learningNam Pham and Sergey Fomel15 August 2022An integrated machine learning-based fault classification workflowJie Qi, Carolan Laudon, and Kurt Marfurt15 August 2022Fault enhancement comparison among coherence enhancement, probabilistic neural networks, and convolutional neural networks in the Taranaki Basin area, New ZealandJosé P. Mora, Heather Bedle, and Kurt J. Marfurt19 May 2022 | Interpretation, Vol. 10, No. 33D fault detection: Using human reasoning to improve performance of convolutional neural networksDonglin Zhu, Lei Li, Rui Guo, Chunfeng Tao, and Shifan Zhan23 June 2022 | GEOPHYSICS, Vol. 87, No. 4Automatic geologic fault identification from seismic data using 2.5D channel attention U-netLei Lin, Zhi Zhong, Zhongxian Cai, Alexander Y. Sun, and ChengLong Li30 May 2022 | GEOPHYSICS, Vol. 87, No. 4Synthetic seismic data generation for automated AI-based procedures with an example application to high-resolution interpretationFernando Vizeu, Joao Zambrini, Anne-Laure Tertois, Bruno de Albuquerque da Graça e Costa, André Queiroz Fernandes, and Anat Canning1 June 2022 | The Leading Edge, Vol. 41, No. 6Fault enhancement using probabilistic neural networks and Laplacian of a Gaussian filter: A case study in the Great South Basin, New ZealandJose P. Mora, Heather Bedle, and Kurt J. Marfurt22 February 2022 | Interpretation, Vol. 10, No. 2Deep learning-based shot-domain seismic deblendingJing Sun, Song Hou, Vetle Vinje, Gordon Poole, and Leiv-J Gelius18 April 2022 | GEOPHYSICS, Vol. 87, No. 3Deep learning for end-to-end subsurface modeling and interpretation: An example from the Groningen gas fieldAria Abubakar, Haibin Di, Anisha Kaul, Cen Li, Zhun Li, Vanessa Simoes, Leigh Truelove, and Tao Zhao1 April 2022 | The Leading Edge, Vol. 41, No. 4Assessing the accuracy of fault interpretation using machine-learning techniques when risking faults for CO2 storage site assessmentEmma A. H. Michie, Behzad Alaei, and Alvar Braathen19 November 2021 | Interpretation, Vol. 10, No. 1Accelerating Seismic Dip Estimation With Deep LearningIEEE Geoscience and Remote Sensing Letters, Vol. 19Attention-Based 3-D Seismic Fault Segmentation Training by a Few 2-D Slice LabelsIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Efficient Fault Surface Grouping in 3-D Seismic Fault DataIEEE Transactions on Geoscience and Remote Sensing, Vol. 60The Way Forward12 January 2023Fault-Guided Seismic Stratigraphy Interpretation via Semi-Supervised Learning9 December 2021Deep Learning Methods applied to Intrusion Detection: Survey, Taxonomy and ChallengesFault detection method based on residual network and Faster R-CNNSeismic Coherence for Discontinuity Interpretation6 November 2021 | Surveys in Geophysics, Vol. 42, No. 6VSP wavefiled separation using GAN base on asymmetric convolution blocksDanping Cao, Yan Jia, and Rongang Cuia1 September 2021Impact of sedimentary facies on machine learning of acoustic impedance from seismic data: Lessons from a geologically realistic 3D modelHongliu Zeng, Yawen He, and Leo Zeng12 August 2021 | Interpretation, Vol. 9, No. 3ChannelSeg3D: Channel simulation and deep learning for channel interpretation in 3D seismic imagesHang Gao, Xinming Wu, and Guofeng Liu10 June 2021 | GEOPHYSICS, Vol. 86, No. 4Research on fault recognition method combining 3D Res-UNet and knowledge distillation8 November 2021 | Applied Geophysics, Vol. 18, No. 2Uncertainty quantification in fault detection using convolutional neural networksRunhai Feng, Dario Grana, and Niels Balling19 March 2021 | GEOPHYSICS, Vol. 86, No. 3Improving fault surface construction with inversion-based methodsZhengfa Bi and Xinming Wu4 January 2021 | GEOPHYSICS, Vol. 86, No. 1Interactively tracking seismic geobodies with a deep-learning flood-filling networkYunzhi Shi, Xinming Wu, and Sergey Fomel14 December 2020 | GEOPHYSICS, Vol. 86, No. 1Landmine Detection Using Autoencoders on Multipolarization GPR Volumetric DataIEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 1Seismic fault detection based on 3D Unet++ modelDun Yang, Yufei Cai, Guangmin Hu, Xingmiao Yao, and Wen Zou30 September 2020Deep learning for characterizing paleokarst features in 3D seismic imagesXinming Wu, Shangsheng Yan, Jie Qi, and Hongliu Zeng30 September 2020Comparing convolutional neural networking and image processing seismic fault detection methodsJie Qi, Bin Lyu, Xinming Wu, and Kurt Marfurt30 September 2020Deep Learning for Characterizing Paleokarst Collapse Features in 3‐D Seismic Images16 September 2020 | Journal of Geophysical Research: Solid Earth, Vol. 125, No. 9Building realistic structure models to train convolutional neural networks for seismic structural interpretationXinming Wu, Zhicheng Geng, Yunzhi Shi, Nam Pham, Sergey Fomel, and Guillaume Caumon16 January 2020 | GEOPHYSICS, Vol. 85, No. 4Seismic stratigraphy interpretation by deep convolutional neural networks: A semisupervised workflowHaibin Di, Zhun Li, Hiren Maniar, and Aria Abubakar30 April 2020 | GEOPHYSICS, Vol. 85, No. 4Deep learning for denoisingSiwei Yu, Jianwei Ma, and Wenlong Wang9 October 2019 | GEOPHYSICS, Vol. 84, No. 6Semiautomated seismic horizon interpretation using the encoder-decoder convolutional neural networkHao Wu, Bo Zhang, Tengfei Lin, Danping Cao, and Yihuai Lou16 October 2019 | GEOPHYSICS, Vol. 84, No. 6FaultNet3D: Predicting Fault Probabilities, Strikes, and Dips With a Single Convolutional Neural NetworkIEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 11Building realistic structure models to train convolutional neural networks for seismic structural interpretationXinming Wu, Zhicheng Geng, Yunzhi Shi, Nam Pham, and Sergey Fomel10 August 2019Seismic stratigraphy interpretation via deep convolutional neural networksHaibin Di, Zhun Li, Hiren Maniar, and Aria Abubakar10 August 2019Innovative automatic fault detection using a volume 3D scanning methodSven Philit, Sébastien Lacaze, and Fabien Pauget10 August 2019Interactive tracking of seismic geobodies using deep learning flood-filling networkYunzhi Shi and Xinming Wu10 August 2019Semi-automated seismic horizon interpretation using encoder-decoder convolutional neural networkHao Wu and Bo Zhang10 August 20193D convolutional neural networks for efficient fault detection and orientation estimationTao Zhao10 August 2019Bayesian deep learning for seismic facies classification and its uncertainty estimationPradip Mukhopadhyay and Subhashis Mallick10 August 2019Machine learning-assisted seismic interpretation with geologic constraintsHaibin Di, Cen Li, Stewart Smith, and Aria Abubakar10 August 2019An enhanced fault-detection method based on adaptive spectral decomposition and super-resolution deep learningZhenyu Yuan, Handong Huang, Yuxin Jiang, Jinbiao Tang, and Jingjing Li7 August 2019 | Interpretation, Vol. 7, No. 3Improving seismic fault detection by super-attribute-based classificationHaibin Di, Mohammod Amir Shafiq, Zhen Wang, and Ghassan AlRegib7 August 2019 | Interpretation, Vol. 7, No. 3Attenuation of random noise using denoising convolutional neural networksXu Si, Yijun Yuan, Tinghua Si, and Shiwen Gao7 August 2019 | Interpretation, Vol. 7, No. 3Deep learning applied to seismic attribute computationDonald P. Griffith, S. Ahmad Zamanian, Jeremy Vila, Antoine Vial-Aussavy, John Solum, R. David Potter, and Francesco Menapace12 June 2019 | Interpretation, Vol. 7, No. 3FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentationXinming Wu, Luming Liang, Yunzhi Shi, and Sergey Fomel16 April 2019 | GEOPHYSICS, Vol. 84, No. 3 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Tao Zhao and Pradip Mukhopadhyay, (2018), A fault-detection workflow using deep learning and image processing, SEG Technical Program Expanded Abstracts : 1966-1970. https://doi.org/10.1190/segam2018-2997005.1 Plain-Language Summary Keywordsfaultsmachine learningneural networksPDF DownloadLoading ..." @default.
- W2892287369 created "2018-09-27" @default.
- W2892287369 creator A5020012026 @default.
- W2892287369 creator A5086514930 @default.
- W2892287369 date "2018-08-27" @default.
- W2892287369 modified "2023-10-18" @default.
- W2892287369 title "A fault-detection workflow using deep learning and image processing" @default.
- W2892287369 cites W2109401225 @default.
- W2892287369 cites W2126097500 @default.
- W2892287369 cites W2278334318 @default.
- W2892287369 cites W2287473451 @default.
- W2892287369 cites W2592421213 @default.
- W2892287369 cites W2592517375 @default.
- W2892287369 cites W2609076558 @default.
- W2892287369 cites W2619324788 @default.
- W2892287369 cites W845365781 @default.
- W2892287369 doi "https://doi.org/10.1190/segam2018-2997005.1" @default.
- W2892287369 hasPublicationYear "2018" @default.
- W2892287369 type Work @default.
- W2892287369 sameAs 2892287369 @default.
- W2892287369 citedByCount "57" @default.
- W2892287369 countsByYear W28922873692019 @default.
- W2892287369 countsByYear W28922873692020 @default.
- W2892287369 countsByYear W28922873692021 @default.
- W2892287369 countsByYear W28922873692022 @default.
- W2892287369 countsByYear W28922873692023 @default.
- W2892287369 crossrefType "proceedings-article" @default.
- W2892287369 hasAuthorship W2892287369A5020012026 @default.
- W2892287369 hasAuthorship W2892287369A5086514930 @default.
- W2892287369 hasConcept C108583219 @default.
- W2892287369 hasConcept C115961682 @default.
- W2892287369 hasConcept C127313418 @default.
- W2892287369 hasConcept C152745839 @default.
- W2892287369 hasConcept C153180895 @default.
- W2892287369 hasConcept C154945302 @default.
- W2892287369 hasConcept C165205528 @default.
- W2892287369 hasConcept C172707124 @default.
- W2892287369 hasConcept C175551986 @default.
- W2892287369 hasConcept C177212765 @default.
- W2892287369 hasConcept C31972630 @default.
- W2892287369 hasConcept C41008148 @default.
- W2892287369 hasConcept C77088390 @default.
- W2892287369 hasConceptScore W2892287369C108583219 @default.
- W2892287369 hasConceptScore W2892287369C115961682 @default.
- W2892287369 hasConceptScore W2892287369C127313418 @default.
- W2892287369 hasConceptScore W2892287369C152745839 @default.
- W2892287369 hasConceptScore W2892287369C153180895 @default.
- W2892287369 hasConceptScore W2892287369C154945302 @default.
- W2892287369 hasConceptScore W2892287369C165205528 @default.
- W2892287369 hasConceptScore W2892287369C172707124 @default.
- W2892287369 hasConceptScore W2892287369C175551986 @default.
- W2892287369 hasConceptScore W2892287369C177212765 @default.
- W2892287369 hasConceptScore W2892287369C31972630 @default.
- W2892287369 hasConceptScore W2892287369C41008148 @default.
- W2892287369 hasConceptScore W2892287369C77088390 @default.
- W2892287369 hasLocation W28922873691 @default.
- W2892287369 hasOpenAccess W2892287369 @default.
- W2892287369 hasPrimaryLocation W28922873691 @default.
- W2892287369 hasRelatedWork W1891287906 @default.
- W2892287369 hasRelatedWork W2036807459 @default.
- W2892287369 hasRelatedWork W2081035100 @default.
- W2892287369 hasRelatedWork W2130228941 @default.
- W2892287369 hasRelatedWork W2161229648 @default.
- W2892287369 hasRelatedWork W2731899572 @default.
- W2892287369 hasRelatedWork W2738221750 @default.
- W2892287369 hasRelatedWork W2993674027 @default.
- W2892287369 hasRelatedWork W3012401223 @default.
- W2892287369 hasRelatedWork W3215138031 @default.
- W2892287369 isParatext "false" @default.
- W2892287369 isRetracted "false" @default.
- W2892287369 magId "2892287369" @default.
- W2892287369 workType "article" @default.