Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892287526> ?p ?o ?g. }
- W2892287526 endingPage "260" @default.
- W2892287526 startingPage "248" @default.
- W2892287526 abstract "The present investigation was executed to determine the effect of rootstock ploidy level on polyamine metabolism and phenolic acid contents in leaves. Kinnow mandarin (Citrus nobilis Lour × Citrus deliciosa Ten) plants were grafted on the diploid (2x) and double-diploid (4x) of Poncirus trifoliata (L.) Raf, Citrus reshni, and Citrus limonia Osbeck. Plants were grown in greenhouse under controlled conditions and fertigated with nutrient solution containing chromium (0.75 mM). After four-months of growth under chromium (Cr) stress, polyamines (free, soluble-conjugated and insoluble-bound) and phenolic acid contents (PAC): p-hydroxybenzoic acid (PHBA), ferulic acid (FA), p-coumaric acid (PCA), gallic acid (GA) and vanillic acid (VA) in leaves were investigated. Enzymes activity of polyamine biosynthesis, i.e., arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC) and spermidine synthase (SpdS), and polyamine degradation, i.e., polyamine oxidase (PAO) and diamine oxidase (DAO), were also determined. Chromium stress caused reductions in polyamine contents (PAC) and enzymes of polyamines biosynthesis. The responses of Kinnow mandarin (KM) plants grafted on diploid or double-diploid rootstocks showed a similar trend, although Cr-stress induced more drastic effects in diploid grafted plants. In the case of polyamine degradative enzymes, Cr-stress enhanced the PAO and DAO activities, but diploid grafted plants showed greater increases than those grafted on double-diploid rootstocks. Cr-stress inhibited the activities of enzymes of polyamine biosynthesis, but inhibition was expressed more in diploid-grafted plants than in double-diploid grafted plants. So, polyamine biosynthesis and degradation were less affected by Cr-toxicity in double-diploid grafted plants than in diploid grafted plants. Similarly, KM plants with double-diploid rootstocks had greater accumulation of phenolic acid contents in their leaves. Combining the findings of our previous reports and the data of the current study, it is suggested that higher polyamine and phenolic acid content accumulation in double-diploid grafted plants strengthens the antioxidative defense system of the Kinnow mandarin plants by regulating the ROS homeostasis and stabilization of membranes under Cr-toxicity. Therefore, higher levels of polyamines and PACs augmented the Cr-tolerance potential of KM plants grafted on double-diploid rootstocks." @default.
- W2892287526 created "2018-09-27" @default.
- W2892287526 creator A5001727842 @default.
- W2892287526 creator A5023755510 @default.
- W2892287526 creator A5033262006 @default.
- W2892287526 creator A5039061152 @default.
- W2892287526 creator A5049293891 @default.
- W2892287526 creator A5058198136 @default.
- W2892287526 creator A5063786345 @default.
- W2892287526 creator A5068684512 @default.
- W2892287526 creator A5069226759 @default.
- W2892287526 creator A5084539432 @default.
- W2892287526 date "2018-12-01" @default.
- W2892287526 modified "2023-10-18" @default.
- W2892287526 title "Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks" @default.
- W2892287526 cites W1092336201 @default.
- W2892287526 cites W164681620 @default.
- W2892287526 cites W190039173 @default.
- W2892287526 cites W1939377436 @default.
- W2892287526 cites W1964298404 @default.
- W2892287526 cites W1972060131 @default.
- W2892287526 cites W1977141196 @default.
- W2892287526 cites W1982955698 @default.
- W2892287526 cites W1983657284 @default.
- W2892287526 cites W1994303639 @default.
- W2892287526 cites W2006697833 @default.
- W2892287526 cites W2007684684 @default.
- W2892287526 cites W2013876780 @default.
- W2892287526 cites W2016783640 @default.
- W2892287526 cites W2021073146 @default.
- W2892287526 cites W2021988010 @default.
- W2892287526 cites W2027757023 @default.
- W2892287526 cites W2050786666 @default.
- W2892287526 cites W2060271078 @default.
- W2892287526 cites W2061389535 @default.
- W2892287526 cites W2072181410 @default.
- W2892287526 cites W2072452302 @default.
- W2892287526 cites W2073566346 @default.
- W2892287526 cites W2086070605 @default.
- W2892287526 cites W2091349161 @default.
- W2892287526 cites W2094846894 @default.
- W2892287526 cites W2112894653 @default.
- W2892287526 cites W2134921343 @default.
- W2892287526 cites W2149826419 @default.
- W2892287526 cites W2159487314 @default.
- W2892287526 cites W2161478492 @default.
- W2892287526 cites W2171516215 @default.
- W2892287526 cites W2178565624 @default.
- W2892287526 cites W2195998820 @default.
- W2892287526 cites W2234928125 @default.
- W2892287526 cites W2317238873 @default.
- W2892287526 cites W2508582203 @default.
- W2892287526 cites W2521764575 @default.
- W2892287526 cites W2562526054 @default.
- W2892287526 cites W2577566146 @default.
- W2892287526 cites W2601002285 @default.
- W2892287526 cites W2618324273 @default.
- W2892287526 cites W2734931483 @default.
- W2892287526 cites W2755353116 @default.
- W2892287526 cites W2766030041 @default.
- W2892287526 cites W2766246080 @default.
- W2892287526 cites W2790128796 @default.
- W2892287526 cites W2791411190 @default.
- W2892287526 cites W2793564942 @default.
- W2892287526 cites W2794175406 @default.
- W2892287526 cites W4293247451 @default.
- W2892287526 doi "https://doi.org/10.1016/j.envexpbot.2018.09.015" @default.
- W2892287526 hasPublicationYear "2018" @default.
- W2892287526 type Work @default.
- W2892287526 sameAs 2892287526 @default.
- W2892287526 citedByCount "12" @default.
- W2892287526 countsByYear W28922875262019 @default.
- W2892287526 countsByYear W28922875262020 @default.
- W2892287526 countsByYear W28922875262021 @default.
- W2892287526 countsByYear W28922875262022 @default.
- W2892287526 crossrefType "journal-article" @default.
- W2892287526 hasAuthorship W2892287526A5001727842 @default.
- W2892287526 hasAuthorship W2892287526A5023755510 @default.
- W2892287526 hasAuthorship W2892287526A5033262006 @default.
- W2892287526 hasAuthorship W2892287526A5039061152 @default.
- W2892287526 hasAuthorship W2892287526A5049293891 @default.
- W2892287526 hasAuthorship W2892287526A5058198136 @default.
- W2892287526 hasAuthorship W2892287526A5063786345 @default.
- W2892287526 hasAuthorship W2892287526A5068684512 @default.
- W2892287526 hasAuthorship W2892287526A5069226759 @default.
- W2892287526 hasAuthorship W2892287526A5084539432 @default.
- W2892287526 hasConcept C104317684 @default.
- W2892287526 hasConcept C121289238 @default.
- W2892287526 hasConcept C143191323 @default.
- W2892287526 hasConcept C181199279 @default.
- W2892287526 hasConcept C185592680 @default.
- W2892287526 hasConcept C27406016 @default.
- W2892287526 hasConcept C2777497464 @default.
- W2892287526 hasConcept C2780115381 @default.
- W2892287526 hasConcept C2780213334 @default.
- W2892287526 hasConcept C2781188418 @default.
- W2892287526 hasConcept C55493867 @default.
- W2892287526 hasConcept C59822182 @default.