Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892287790> ?p ?o ?g. }
- W2892287790 endingPage "220" @default.
- W2892287790 startingPage "75" @default.
- W2892287790 abstract "The notes are an overview of the theory of pathwise weak solutions of two classes of scalar fully nonlinear first- and second-order degenerate parabolic partial differential equations with multiplicative rough time dependence, a special case being Brownian. These are Hamilton-Jacobi, Hamilton-Jacobi-Isaacs-Bellman and quasilinear divergence form equations including multidimensional scalar conservation laws. If the time dependence is “regular”, the weak solutions are respectively the viscosity and entropy/kinetic solutions. The main results are the well-posedness and qualitative properties of the solutions. Some concrete applications are also discussed." @default.
- W2892287790 created "2018-09-27" @default.
- W2892287790 creator A5066466020 @default.
- W2892287790 date "2019-01-01" @default.
- W2892287790 modified "2023-10-06" @default.
- W2892287790 title "Pathwise Solutions for Fully Nonlinear First- and Second-Order Partial Differential Equations with Multiplicative Rough Time Dependence" @default.
- W2892287790 cites W100459338 @default.
- W2892287790 cites W1487586009 @default.
- W2892287790 cites W1970604545 @default.
- W2892287790 cites W1979308690 @default.
- W2892287790 cites W1986838484 @default.
- W2892287790 cites W1989845808 @default.
- W2892287790 cites W1994710706 @default.
- W2892287790 cites W1994930222 @default.
- W2892287790 cites W2001870158 @default.
- W2892287790 cites W2003166268 @default.
- W2892287790 cites W2004095444 @default.
- W2892287790 cites W2004156334 @default.
- W2892287790 cites W2005085333 @default.
- W2892287790 cites W2005917666 @default.
- W2892287790 cites W2015658013 @default.
- W2892287790 cites W2018036385 @default.
- W2892287790 cites W2021787300 @default.
- W2892287790 cites W2022988654 @default.
- W2892287790 cites W2023811393 @default.
- W2892287790 cites W2024012668 @default.
- W2892287790 cites W2026968525 @default.
- W2892287790 cites W2028316825 @default.
- W2892287790 cites W2030229707 @default.
- W2892287790 cites W2032316144 @default.
- W2892287790 cites W2038686546 @default.
- W2892287790 cites W2041968314 @default.
- W2892287790 cites W2044600316 @default.
- W2892287790 cites W2046944236 @default.
- W2892287790 cites W2047272700 @default.
- W2892287790 cites W2055424061 @default.
- W2892287790 cites W2057470999 @default.
- W2892287790 cites W2058699755 @default.
- W2892287790 cites W2059091656 @default.
- W2892287790 cites W2061051211 @default.
- W2892287790 cites W2062918055 @default.
- W2892287790 cites W2071041760 @default.
- W2892287790 cites W2081922360 @default.
- W2892287790 cites W2082226556 @default.
- W2892287790 cites W2085225003 @default.
- W2892287790 cites W2088650958 @default.
- W2892287790 cites W2091829906 @default.
- W2892287790 cites W2096223665 @default.
- W2892287790 cites W2097536962 @default.
- W2892287790 cites W2110090571 @default.
- W2892287790 cites W2148316915 @default.
- W2892287790 cites W2156610674 @default.
- W2892287790 cites W2160804526 @default.
- W2892287790 cites W2177195156 @default.
- W2892287790 cites W2329288218 @default.
- W2892287790 cites W2365864615 @default.
- W2892287790 cites W2476432869 @default.
- W2892287790 cites W2482978852 @default.
- W2892287790 cites W2525017925 @default.
- W2892287790 cites W2525846494 @default.
- W2892287790 cites W2556686075 @default.
- W2892287790 cites W2962859408 @default.
- W2892287790 cites W2962878426 @default.
- W2892287790 cites W2963166262 @default.
- W2892287790 cites W2963644558 @default.
- W2892287790 cites W2964067544 @default.
- W2892287790 cites W3100836443 @default.
- W2892287790 cites W4213194053 @default.
- W2892287790 cites W4238313514 @default.
- W2892287790 cites W4244726376 @default.
- W2892287790 doi "https://doi.org/10.1007/978-3-030-29545-5_3" @default.
- W2892287790 hasPublicationYear "2019" @default.
- W2892287790 type Work @default.
- W2892287790 sameAs 2892287790 @default.
- W2892287790 citedByCount "10" @default.
- W2892287790 countsByYear W28922877902019 @default.
- W2892287790 countsByYear W28922877902020 @default.
- W2892287790 countsByYear W28922877902021 @default.
- W2892287790 countsByYear W28922877902022 @default.
- W2892287790 countsByYear W28922877902023 @default.
- W2892287790 crossrefType "book-chapter" @default.
- W2892287790 hasAuthorship W2892287790A5066466020 @default.
- W2892287790 hasBestOaLocation W28922877902 @default.
- W2892287790 hasConcept C105795698 @default.
- W2892287790 hasConcept C112401455 @default.
- W2892287790 hasConcept C121332964 @default.
- W2892287790 hasConcept C134306372 @default.
- W2892287790 hasConcept C158622935 @default.
- W2892287790 hasConcept C2524010 @default.
- W2892287790 hasConcept C28826006 @default.
- W2892287790 hasConcept C33923547 @default.
- W2892287790 hasConcept C42747912 @default.
- W2892287790 hasConcept C57691317 @default.
- W2892287790 hasConcept C62520636 @default.
- W2892287790 hasConcept C72319582 @default.
- W2892287790 hasConcept C88731125 @default.
- W2892287790 hasConcept C93779851 @default.
- W2892287790 hasConceptScore W2892287790C105795698 @default.