Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892289985> ?p ?o ?g. }
- W2892289985 endingPage "4792" @default.
- W2892289985 startingPage "4771" @default.
- W2892289985 abstract "Abstract. Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources." @default.
- W2892289985 created "2018-09-27" @default.
- W2892289985 creator A5056706783 @default.
- W2892289985 creator A5076352077 @default.
- W2892289985 creator A5083514118 @default.
- W2892289985 date "2018-09-13" @default.
- W2892289985 modified "2023-10-11" @default.
- W2892289985 title "Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization" @default.
- W2892289985 cites W1556201293 @default.
- W2892289985 cites W1595159159 @default.
- W2892289985 cites W1865130434 @default.
- W2892289985 cites W1963921604 @default.
- W2892289985 cites W1964997367 @default.
- W2892289985 cites W1974614011 @default.
- W2892289985 cites W1977040034 @default.
- W2892289985 cites W1978760614 @default.
- W2892289985 cites W1979422022 @default.
- W2892289985 cites W1979486410 @default.
- W2892289985 cites W1983676031 @default.
- W2892289985 cites W1985288162 @default.
- W2892289985 cites W1987342969 @default.
- W2892289985 cites W1989319038 @default.
- W2892289985 cites W1989692403 @default.
- W2892289985 cites W1990694652 @default.
- W2892289985 cites W1991138803 @default.
- W2892289985 cites W2001571496 @default.
- W2892289985 cites W2005309788 @default.
- W2892289985 cites W2005806759 @default.
- W2892289985 cites W2013116496 @default.
- W2892289985 cites W2013260983 @default.
- W2892289985 cites W2013341039 @default.
- W2892289985 cites W2013558387 @default.
- W2892289985 cites W2019207321 @default.
- W2892289985 cites W2020010421 @default.
- W2892289985 cites W2025148441 @default.
- W2892289985 cites W2029816621 @default.
- W2892289985 cites W2035699211 @default.
- W2892289985 cites W2036033711 @default.
- W2892289985 cites W2042315239 @default.
- W2892289985 cites W2042951326 @default.
- W2892289985 cites W2044648858 @default.
- W2892289985 cites W2046629514 @default.
- W2892289985 cites W2050807833 @default.
- W2892289985 cites W2051784080 @default.
- W2892289985 cites W2056258586 @default.
- W2892289985 cites W2056954966 @default.
- W2892289985 cites W2057035760 @default.
- W2892289985 cites W2066444866 @default.
- W2892289985 cites W2069663627 @default.
- W2892289985 cites W2069930921 @default.
- W2892289985 cites W2072642501 @default.
- W2892289985 cites W2076091918 @default.
- W2892289985 cites W2079325629 @default.
- W2892289985 cites W2083202425 @default.
- W2892289985 cites W2085143124 @default.
- W2892289985 cites W2091146451 @default.
- W2892289985 cites W2096166399 @default.
- W2892289985 cites W2098785837 @default.
- W2892289985 cites W2098937035 @default.
- W2892289985 cites W2122447387 @default.
- W2892289985 cites W2125332715 @default.
- W2892289985 cites W2129537345 @default.
- W2892289985 cites W2140811232 @default.
- W2892289985 cites W2140964565 @default.
- W2892289985 cites W2152195021 @default.
- W2892289985 cites W2171997072 @default.
- W2892289985 cites W2173358939 @default.
- W2892289985 cites W2184289110 @default.
- W2892289985 cites W2205158676 @default.
- W2892289985 cites W2208293910 @default.
- W2892289985 cites W2221487567 @default.
- W2892289985 cites W2278830514 @default.
- W2892289985 cites W2344207775 @default.
- W2892289985 cites W2344356973 @default.
- W2892289985 cites W2408377373 @default.
- W2892289985 cites W2423094380 @default.
- W2892289985 cites W2508243463 @default.
- W2892289985 cites W2549184242 @default.
- W2892289985 cites W2549957027 @default.
- W2892289985 cites W2557002900 @default.
- W2892289985 cites W2621028994 @default.
- W2892289985 cites W2707229801 @default.
- W2892289985 cites W2761698665 @default.
- W2892289985 cites W2765742909 @default.
- W2892289985 cites W2768272937 @default.
- W2892289985 cites W2774595919 @default.
- W2892289985 cites W2791328889 @default.
- W2892289985 cites W2797086020 @default.
- W2892289985 cites W2807698901 @default.
- W2892289985 cites W2888879635 @default.
- W2892289985 cites W3289101 @default.
- W2892289985 cites W4241727697 @default.
- W2892289985 doi "https://doi.org/10.5194/hess-22-4771-2018" @default.
- W2892289985 hasPublicationYear "2018" @default.
- W2892289985 type Work @default.
- W2892289985 sameAs 2892289985 @default.
- W2892289985 citedByCount "113" @default.
- W2892289985 countsByYear W28922899852019 @default.