Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892302657> ?p ?o ?g. }
- W2892302657 endingPage "71" @default.
- W2892302657 startingPage "55" @default.
- W2892302657 abstract "Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction." @default.
- W2892302657 created "2018-09-27" @default.
- W2892302657 creator A5012212826 @default.
- W2892302657 creator A5018046660 @default.
- W2892302657 creator A5056395219 @default.
- W2892302657 creator A5056992429 @default.
- W2892302657 date "2018-11-01" @default.
- W2892302657 modified "2023-10-10" @default.
- W2892302657 title "Construction of traffic state vector using mutual information for short-term traffic flow prediction" @default.
- W2892302657 cites W1127331733 @default.
- W2892302657 cites W1925768782 @default.
- W2892302657 cites W1968078488 @default.
- W2892302657 cites W1969601155 @default.
- W2892302657 cites W1970460434 @default.
- W2892302657 cites W1971757341 @default.
- W2892302657 cites W1972340269 @default.
- W2892302657 cites W1973943669 @default.
- W2892302657 cites W1983025701 @default.
- W2892302657 cites W1991770012 @default.
- W2892302657 cites W1992830012 @default.
- W2892302657 cites W1994978245 @default.
- W2892302657 cites W2004073866 @default.
- W2892302657 cites W2009656341 @default.
- W2892302657 cites W2021153764 @default.
- W2892302657 cites W2032131451 @default.
- W2892302657 cites W2040297119 @default.
- W2892302657 cites W2044794662 @default.
- W2892302657 cites W2049952439 @default.
- W2892302657 cites W2057918527 @default.
- W2892302657 cites W2059128538 @default.
- W2892302657 cites W2073531875 @default.
- W2892302657 cites W2075407851 @default.
- W2892302657 cites W2077537883 @default.
- W2892302657 cites W2080271103 @default.
- W2892302657 cites W2083238230 @default.
- W2892302657 cites W2093961844 @default.
- W2892302657 cites W2103026193 @default.
- W2892302657 cites W2117462983 @default.
- W2892302657 cites W2118561568 @default.
- W2892302657 cites W2121476720 @default.
- W2892302657 cites W2150010190 @default.
- W2892302657 cites W2153635508 @default.
- W2892302657 cites W2154053567 @default.
- W2892302657 cites W2156793027 @default.
- W2892302657 cites W2160507653 @default.
- W2892302657 cites W2165991108 @default.
- W2892302657 cites W2168332608 @default.
- W2892302657 cites W2190353863 @default.
- W2892302657 cites W2260637115 @default.
- W2892302657 cites W2277710627 @default.
- W2892302657 cites W2326633833 @default.
- W2892302657 cites W2593182953 @default.
- W2892302657 cites W3098521595 @default.
- W2892302657 cites W594114979 @default.
- W2892302657 doi "https://doi.org/10.1016/j.trc.2018.09.015" @default.
- W2892302657 hasPublicationYear "2018" @default.
- W2892302657 type Work @default.
- W2892302657 sameAs 2892302657 @default.
- W2892302657 citedByCount "48" @default.
- W2892302657 countsByYear W28923026572019 @default.
- W2892302657 countsByYear W28923026572020 @default.
- W2892302657 countsByYear W28923026572021 @default.
- W2892302657 countsByYear W28923026572022 @default.
- W2892302657 countsByYear W28923026572023 @default.
- W2892302657 crossrefType "journal-article" @default.
- W2892302657 hasAuthorship W2892302657A5012212826 @default.
- W2892302657 hasAuthorship W2892302657A5018046660 @default.
- W2892302657 hasAuthorship W2892302657A5056395219 @default.
- W2892302657 hasAuthorship W2892302657A5056992429 @default.
- W2892302657 hasConcept C11413529 @default.
- W2892302657 hasConcept C121332964 @default.
- W2892302657 hasConcept C12267149 @default.
- W2892302657 hasConcept C124101348 @default.
- W2892302657 hasConcept C127413603 @default.
- W2892302657 hasConcept C152139883 @default.
- W2892302657 hasConcept C154945302 @default.
- W2892302657 hasConcept C176715033 @default.
- W2892302657 hasConcept C207512268 @default.
- W2892302657 hasConcept C22212356 @default.
- W2892302657 hasConcept C25492975 @default.
- W2892302657 hasConcept C2777798563 @default.
- W2892302657 hasConcept C2779888511 @default.
- W2892302657 hasConcept C2780801425 @default.
- W2892302657 hasConcept C31258907 @default.
- W2892302657 hasConcept C41008148 @default.
- W2892302657 hasConcept C47796450 @default.
- W2892302657 hasConcept C48103436 @default.
- W2892302657 hasConcept C61797465 @default.
- W2892302657 hasConcept C62520636 @default.
- W2892302657 hasConcept C64093975 @default.
- W2892302657 hasConcept C74650414 @default.
- W2892302657 hasConcept C79403827 @default.
- W2892302657 hasConceptScore W2892302657C11413529 @default.
- W2892302657 hasConceptScore W2892302657C121332964 @default.
- W2892302657 hasConceptScore W2892302657C12267149 @default.
- W2892302657 hasConceptScore W2892302657C124101348 @default.
- W2892302657 hasConceptScore W2892302657C127413603 @default.
- W2892302657 hasConceptScore W2892302657C152139883 @default.