Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892316911> ?p ?o ?g. }
- W2892316911 abstract "Distantly supervised relation extraction employs existing knowledge graphs to automatically collect training data. While distant supervision is effective to scale relation extraction up to large-scale corpora, it inevitably suffers from the wrong labeling problem. Many efforts have been devoted to identifying valid instances from noisy data. However, most existing methods handle each relation in isolation, regardless of rich semantic correlations located in relation hierarchies. In this paper, we aim to incorporate the hierarchical information of relations for distantly supervised relation extraction and propose a novel hierarchical attention scheme. The multiple layers of our hierarchical attention scheme provide coarse-to-fine granularity to better identify valid instances, which is especially effective for extracting those long-tail relations. The experimental results on a large-scale benchmark dataset demonstrate that our models are capable of modeling the hierarchical information of relations and significantly outperform other baselines. The source code of this paper can be obtained from https://github.com/thunlp/HNRE." @default.
- W2892316911 created "2018-09-27" @default.
- W2892316911 creator A5002250184 @default.
- W2892316911 creator A5033816918 @default.
- W2892316911 creator A5046448314 @default.
- W2892316911 creator A5071458554 @default.
- W2892316911 creator A5090307526 @default.
- W2892316911 date "2018-01-01" @default.
- W2892316911 modified "2023-10-17" @default.
- W2892316911 title "Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention" @default.
- W2892316911 cites W145476170 @default.
- W2892316911 cites W1523949738 @default.
- W2892316911 cites W1604644367 @default.
- W2892316911 cites W1614298861 @default.
- W2892316911 cites W174427690 @default.
- W2892316911 cites W1838058638 @default.
- W2892316911 cites W1852412531 @default.
- W2892316911 cites W1981082061 @default.
- W2892316911 cites W2053238041 @default.
- W2892316911 cites W2061851712 @default.
- W2892316911 cites W2094728533 @default.
- W2892316911 cites W2105313627 @default.
- W2892316911 cites W2107598941 @default.
- W2892316911 cites W2127723919 @default.
- W2892316911 cites W2132679783 @default.
- W2892316911 cites W2132826100 @default.
- W2892316911 cites W2143042756 @default.
- W2892316911 cites W2146753383 @default.
- W2892316911 cites W2155454737 @default.
- W2892316911 cites W2162657744 @default.
- W2892316911 cites W2163362093 @default.
- W2892316911 cites W2226877337 @default.
- W2892316911 cites W2250333922 @default.
- W2892316911 cites W2250521169 @default.
- W2892316911 cites W2251135946 @default.
- W2892316911 cites W2336681149 @default.
- W2892316911 cites W2515462165 @default.
- W2892316911 cites W2534712034 @default.
- W2892316911 cites W2572179331 @default.
- W2892316911 cites W2604610161 @default.
- W2892316911 cites W2759211898 @default.
- W2892316911 cites W2759996146 @default.
- W2892316911 cites W2760600531 @default.
- W2892316911 cites W2776652360 @default.
- W2892316911 cites W2788031953 @default.
- W2892316911 cites W2788798739 @default.
- W2892316911 cites W2962924839 @default.
- W2892316911 cites W2963454301 @default.
- W2892316911 cites W2964217331 @default.
- W2892316911 cites W2964224278 @default.
- W2892316911 cites W36903255 @default.
- W2892316911 doi "https://doi.org/10.18653/v1/d18-1247" @default.
- W2892316911 hasPublicationYear "2018" @default.
- W2892316911 type Work @default.
- W2892316911 sameAs 2892316911 @default.
- W2892316911 citedByCount "109" @default.
- W2892316911 countsByYear W28923169112018 @default.
- W2892316911 countsByYear W28923169112019 @default.
- W2892316911 countsByYear W28923169112020 @default.
- W2892316911 countsByYear W28923169112021 @default.
- W2892316911 countsByYear W28923169112022 @default.
- W2892316911 countsByYear W28923169112023 @default.
- W2892316911 crossrefType "proceedings-article" @default.
- W2892316911 hasAuthorship W2892316911A5002250184 @default.
- W2892316911 hasAuthorship W2892316911A5033816918 @default.
- W2892316911 hasAuthorship W2892316911A5046448314 @default.
- W2892316911 hasAuthorship W2892316911A5071458554 @default.
- W2892316911 hasAuthorship W2892316911A5090307526 @default.
- W2892316911 hasBestOaLocation W28923169111 @default.
- W2892316911 hasConcept C111919701 @default.
- W2892316911 hasConcept C119857082 @default.
- W2892316911 hasConcept C121332964 @default.
- W2892316911 hasConcept C124101348 @default.
- W2892316911 hasConcept C13280743 @default.
- W2892316911 hasConcept C134306372 @default.
- W2892316911 hasConcept C144986985 @default.
- W2892316911 hasConcept C153604712 @default.
- W2892316911 hasConcept C154945302 @default.
- W2892316911 hasConcept C177264268 @default.
- W2892316911 hasConcept C177774035 @default.
- W2892316911 hasConcept C185798385 @default.
- W2892316911 hasConcept C195807954 @default.
- W2892316911 hasConcept C199360897 @default.
- W2892316911 hasConcept C205649164 @default.
- W2892316911 hasConcept C25343380 @default.
- W2892316911 hasConcept C2776760102 @default.
- W2892316911 hasConcept C2778755073 @default.
- W2892316911 hasConcept C33923547 @default.
- W2892316911 hasConcept C41008148 @default.
- W2892316911 hasConcept C43126263 @default.
- W2892316911 hasConcept C62520636 @default.
- W2892316911 hasConcept C77618280 @default.
- W2892316911 hasConceptScore W2892316911C111919701 @default.
- W2892316911 hasConceptScore W2892316911C119857082 @default.
- W2892316911 hasConceptScore W2892316911C121332964 @default.
- W2892316911 hasConceptScore W2892316911C124101348 @default.
- W2892316911 hasConceptScore W2892316911C13280743 @default.
- W2892316911 hasConceptScore W2892316911C134306372 @default.
- W2892316911 hasConceptScore W2892316911C144986985 @default.
- W2892316911 hasConceptScore W2892316911C153604712 @default.