Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892320598> ?p ?o ?g. }
- W2892320598 abstract "Growing urbanisation and imperviousness have augmented magnitudes of peak flows, resulting in flooding especially during extreme events. Flood forecast of extreme events can rely on real‐time ensemble flood forecasting systems. Such systems often use predictions from physical models and precipitation ensembles to predict downstream urban flood hydrographs. However, these methods are seldom used in small catchments, where flood predictions may assist emergency management. We explore the relative utility of two models, the Sacramento Model (SAC‐SMA) and an adaptive neuro‐fuzzy inference system (ANFIS) for ensemble flood prediction for nine small urban catchments located near New York City. The models were used to reforecast streamflow for Hurricane Irene (160 mm) and a 35 mm storm across lead times from 3 to 24 hr. Differences in performance between models were small for short (3 hr) lead times, and were similar for the 35 mm storm. Reforecasts of hurricane Irene at 24‐hr lead times show strong performance for SAC‐SMA, but a decline in performance for ANFIS. Model performance did not vary systematically with either catchment size or imperviousness. Our results suggest that model selection is especially important when reforecasting large rain events with longer lead times in small urban catchments." @default.
- W2892320598 created "2018-09-27" @default.
- W2892320598 creator A5006904826 @default.
- W2892320598 creator A5030089452 @default.
- W2892320598 creator A5053437724 @default.
- W2892320598 creator A5074988853 @default.
- W2892320598 date "2018-10-02" @default.
- W2892320598 modified "2023-10-02" @default.
- W2892320598 title "A comparison of SAC‐SMA and Adaptive Neuro‐fuzzy Inference System for real‐time flood forecasting in small urban catchments" @default.
- W2892320598 cites W1869562367 @default.
- W2892320598 cites W1947883770 @default.
- W2892320598 cites W1967382613 @default.
- W2892320598 cites W1970849337 @default.
- W2892320598 cites W1971398942 @default.
- W2892320598 cites W1980854310 @default.
- W2892320598 cites W1986972399 @default.
- W2892320598 cites W1988218448 @default.
- W2892320598 cites W1995877312 @default.
- W2892320598 cites W2001655691 @default.
- W2892320598 cites W2006070826 @default.
- W2892320598 cites W2009203913 @default.
- W2892320598 cites W2012883379 @default.
- W2892320598 cites W2013343190 @default.
- W2892320598 cites W2018034009 @default.
- W2892320598 cites W2047508063 @default.
- W2892320598 cites W2049604804 @default.
- W2892320598 cites W2050590406 @default.
- W2892320598 cites W2062087947 @default.
- W2892320598 cites W2064184542 @default.
- W2892320598 cites W2073799710 @default.
- W2892320598 cites W2079929827 @default.
- W2892320598 cites W2081346522 @default.
- W2892320598 cites W2082484980 @default.
- W2892320598 cites W2087238493 @default.
- W2892320598 cites W2088235247 @default.
- W2892320598 cites W2099382815 @default.
- W2892320598 cites W2110464178 @default.
- W2892320598 cites W2112435054 @default.
- W2892320598 cites W2120933360 @default.
- W2892320598 cites W2126241799 @default.
- W2892320598 cites W2131653946 @default.
- W2892320598 cites W2133321814 @default.
- W2892320598 cites W2147276516 @default.
- W2892320598 cites W2151545251 @default.
- W2892320598 cites W2157103667 @default.
- W2892320598 cites W2170690812 @default.
- W2892320598 cites W2232357239 @default.
- W2892320598 cites W2266643235 @default.
- W2892320598 cites W2276342788 @default.
- W2892320598 cites W2337246370 @default.
- W2892320598 cites W2339220985 @default.
- W2892320598 cites W2339414726 @default.
- W2892320598 cites W2563956511 @default.
- W2892320598 cites W2618281496 @default.
- W2892320598 cites W2725561429 @default.
- W2892320598 cites W4211007335 @default.
- W2892320598 cites W4230113864 @default.
- W2892320598 cites W4253924320 @default.
- W2892320598 cites W572368787 @default.
- W2892320598 doi "https://doi.org/10.1111/jfr3.12492" @default.
- W2892320598 hasPublicationYear "2018" @default.
- W2892320598 type Work @default.
- W2892320598 sameAs 2892320598 @default.
- W2892320598 citedByCount "9" @default.
- W2892320598 countsByYear W28923205982019 @default.
- W2892320598 countsByYear W28923205982020 @default.
- W2892320598 countsByYear W28923205982021 @default.
- W2892320598 countsByYear W28923205982022 @default.
- W2892320598 crossrefType "journal-article" @default.
- W2892320598 hasAuthorship W2892320598A5006904826 @default.
- W2892320598 hasAuthorship W2892320598A5030089452 @default.
- W2892320598 hasAuthorship W2892320598A5053437724 @default.
- W2892320598 hasAuthorship W2892320598A5074988853 @default.
- W2892320598 hasBestOaLocation W28923205981 @default.
- W2892320598 hasConcept C105306849 @default.
- W2892320598 hasConcept C107054158 @default.
- W2892320598 hasConcept C126197015 @default.
- W2892320598 hasConcept C126645576 @default.
- W2892320598 hasConcept C127313418 @default.
- W2892320598 hasConcept C153294291 @default.
- W2892320598 hasConcept C154936535 @default.
- W2892320598 hasConcept C154945302 @default.
- W2892320598 hasConcept C15744967 @default.
- W2892320598 hasConcept C166957645 @default.
- W2892320598 hasConcept C171878848 @default.
- W2892320598 hasConcept C183195422 @default.
- W2892320598 hasConcept C186108316 @default.
- W2892320598 hasConcept C186594467 @default.
- W2892320598 hasConcept C187320778 @default.
- W2892320598 hasConcept C195975749 @default.
- W2892320598 hasConcept C205649164 @default.
- W2892320598 hasConcept C39432304 @default.
- W2892320598 hasConcept C41008148 @default.
- W2892320598 hasConcept C49204034 @default.
- W2892320598 hasConcept C53739315 @default.
- W2892320598 hasConcept C542102704 @default.
- W2892320598 hasConcept C58166 @default.
- W2892320598 hasConcept C58640448 @default.
- W2892320598 hasConcept C74256435 @default.
- W2892320598 hasConcept C76856003 @default.