Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892336822> ?p ?o ?g. }
- W2892336822 endingPage "50938" @default.
- W2892336822 startingPage "50927" @default.
- W2892336822 abstract "Although the cloud-based robotic system has provided the services in various industries, its data safety is continuously threatened, and the network intrusion detection system (NIDS) is considered as a necessary component to ensure its security. In recent years, many machine learning (ML) techniques have been applied for building a more intelligent NIDS. Most NIDSs based on the ML method and artificial intelligence techniques are either supervised or unsupervised. However, the supervised learning for NIDS depends much on the labeled data. This weakness makes it harder to detect the latest attack patterns. Meanwhile, the unsupervised learning for NIDS often fails to give the satisfactory results. Therefore, this paper proposed a novel fuzziness-based semi-supervised learning approach via ensemble learning for network intrusion detection on the cloud-based robotic system, which can address the above issues. First, due to the good generalization ability of ensemble learning, we construct an ensemble system trained by the labeled data. Moreover, for better utilizing the unlabeled data, a fuzziness-based method is adopted for data analysis. In this way, the noisy and redundant examples in the data set are removed. Finally, we use the same ensemble approach to combine both supervised and unsupervised parts. To verify the effectiveness and robustness of the NIDS, the proposed approach is tested on the NSL-KDD data set, which is a commonly used traffic data set. The experimental results show that the proposed approach achieves the accuracy 84.54% and 71.29% on the, respectively, “KDDTest+”and “KDDTest-21”data sets. When compared with the stateof-the-art method, the proposed method also delivers a promising result." @default.
- W2892336822 created "2018-09-27" @default.
- W2892336822 creator A5004973790 @default.
- W2892336822 creator A5022698614 @default.
- W2892336822 creator A5039664201 @default.
- W2892336822 creator A5080368180 @default.
- W2892336822 creator A5090681277 @default.
- W2892336822 date "2018-01-01" @default.
- W2892336822 modified "2023-10-14" @default.
- W2892336822 title "A Novel Semi-Supervised Learning Approach for Network Intrusion Detection on Cloud-Based Robotic System" @default.
- W2892336822 cites W1498436455 @default.
- W2892336822 cites W1518893541 @default.
- W2892336822 cites W1663973292 @default.
- W2892336822 cites W1968817125 @default.
- W2892336822 cites W1978779053 @default.
- W2892336822 cites W2004992275 @default.
- W2892336822 cites W2016551721 @default.
- W2892336822 cites W2024097794 @default.
- W2892336822 cites W2040121225 @default.
- W2892336822 cites W2048679005 @default.
- W2892336822 cites W2065262301 @default.
- W2892336822 cites W2079057609 @default.
- W2892336822 cites W2091876637 @default.
- W2892336822 cites W2099940443 @default.
- W2892336822 cites W2100537916 @default.
- W2892336822 cites W2106301401 @default.
- W2892336822 cites W2121716324 @default.
- W2892336822 cites W2139669429 @default.
- W2892336822 cites W2150847526 @default.
- W2892336822 cites W2160947835 @default.
- W2892336822 cites W2210303234 @default.
- W2892336822 cites W2346714907 @default.
- W2892336822 cites W2560162835 @default.
- W2892336822 cites W2595327353 @default.
- W2892336822 cites W2762776925 @default.
- W2892336822 cites W2766767083 @default.
- W2892336822 cites W2774043027 @default.
- W2892336822 cites W2783741806 @default.
- W2892336822 cites W2793489000 @default.
- W2892336822 cites W2802697544 @default.
- W2892336822 cites W2911964244 @default.
- W2892336822 cites W4238294603 @default.
- W2892336822 cites W4376849086 @default.
- W2892336822 cites W605583246 @default.
- W2892336822 doi "https://doi.org/10.1109/access.2018.2868171" @default.
- W2892336822 hasPublicationYear "2018" @default.
- W2892336822 type Work @default.
- W2892336822 sameAs 2892336822 @default.
- W2892336822 citedByCount "44" @default.
- W2892336822 countsByYear W28923368222018 @default.
- W2892336822 countsByYear W28923368222019 @default.
- W2892336822 countsByYear W28923368222020 @default.
- W2892336822 countsByYear W28923368222021 @default.
- W2892336822 countsByYear W28923368222022 @default.
- W2892336822 countsByYear W28923368222023 @default.
- W2892336822 crossrefType "journal-article" @default.
- W2892336822 hasAuthorship W2892336822A5004973790 @default.
- W2892336822 hasAuthorship W2892336822A5022698614 @default.
- W2892336822 hasAuthorship W2892336822A5039664201 @default.
- W2892336822 hasAuthorship W2892336822A5080368180 @default.
- W2892336822 hasAuthorship W2892336822A5090681277 @default.
- W2892336822 hasBestOaLocation W28923368221 @default.
- W2892336822 hasConcept C104317684 @default.
- W2892336822 hasConcept C111919701 @default.
- W2892336822 hasConcept C119857082 @default.
- W2892336822 hasConcept C124101348 @default.
- W2892336822 hasConcept C134306372 @default.
- W2892336822 hasConcept C136389625 @default.
- W2892336822 hasConcept C154945302 @default.
- W2892336822 hasConcept C177148314 @default.
- W2892336822 hasConcept C185592680 @default.
- W2892336822 hasConcept C33923547 @default.
- W2892336822 hasConcept C35525427 @default.
- W2892336822 hasConcept C41008148 @default.
- W2892336822 hasConcept C45942800 @default.
- W2892336822 hasConcept C50644808 @default.
- W2892336822 hasConcept C55493867 @default.
- W2892336822 hasConcept C58973888 @default.
- W2892336822 hasConcept C63479239 @default.
- W2892336822 hasConcept C79974875 @default.
- W2892336822 hasConcept C8038995 @default.
- W2892336822 hasConceptScore W2892336822C104317684 @default.
- W2892336822 hasConceptScore W2892336822C111919701 @default.
- W2892336822 hasConceptScore W2892336822C119857082 @default.
- W2892336822 hasConceptScore W2892336822C124101348 @default.
- W2892336822 hasConceptScore W2892336822C134306372 @default.
- W2892336822 hasConceptScore W2892336822C136389625 @default.
- W2892336822 hasConceptScore W2892336822C154945302 @default.
- W2892336822 hasConceptScore W2892336822C177148314 @default.
- W2892336822 hasConceptScore W2892336822C185592680 @default.
- W2892336822 hasConceptScore W2892336822C33923547 @default.
- W2892336822 hasConceptScore W2892336822C35525427 @default.
- W2892336822 hasConceptScore W2892336822C41008148 @default.
- W2892336822 hasConceptScore W2892336822C45942800 @default.
- W2892336822 hasConceptScore W2892336822C50644808 @default.
- W2892336822 hasConceptScore W2892336822C55493867 @default.
- W2892336822 hasConceptScore W2892336822C58973888 @default.
- W2892336822 hasConceptScore W2892336822C63479239 @default.