Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892337247> ?p ?o ?g. }
- W2892337247 abstract "Glioma grading with dynamic 18F-FET PET (0–40 min p.i.) is typically performed by analysing the mean time-activity curve of the entire tumour or a suspicious area within a heterogeneous tumour. This work aimed to ensure a reader-independent glioma characterisation and identification of aggressive sub-volumes by performing a voxel-based analysis with diagnostically relevant kinetic and static 18F-FET PET parameters. One hundred sixty-two patients with a newly diagnosed glioma classified according to histologic and molecular genetic properties were evaluated. The biological tumour volume (BTV) was segmented in static 20–40 min p.i. 18F-FET PET images using the established threshold of 1.6 × background activity. For each enclosed voxel, the time-to-peak (TTP), the late slope (Slope15–40), and the tumour-to-background ratios (TBR5–15, TBR20–40) obtained from 5 to 15 min p.i. and 20 to 40 min p.i. images were determined. The percentage portion of these values within the BTV was evaluated with percentage volume fractions (PVFs) and cumulated percentage volume histograms (PVHs). The ability to differentiate histologic and molecular genetic classes was assessed and compared to volume-of-interest (VOI)-based parameters. Aggressive WHO grades III and IV and IDH-wildtype gliomas were dominated by a high proportion of voxels with an early peak, negative slope, and high TBR, whereby the PVHs with TTP < 20 min p.i., Slope15–40 < 0 SUV/h, and TBR5–15 and TBR20–40 > 2 yielded the most significant differences between glioma grades. We found significant differences of the parameters between WHO grades and IDH mutation status, where the effect size was predominantly higher for voxel-based PVHs compared to the corresponding VOI-based parameters. A low overlap of BTV sub-volumes defined by TTP < 20 min p.i. and negative Slope15–40 with TBR5–15 > 2- and TBR20–40 > 2-defined hotspots was observed. The presented approach applying voxel-wise analysis of dynamic 18F-FET PET enables an enhanced characterisation of gliomas and might potentially provide a fast identification of aggressive sub-volumes within the BTV. Parametric 3D 18F-FET PET information as investigated in this study has the potential to guide individual therapy instrumentation and may be included in future biopsy studies." @default.
- W2892337247 created "2018-09-27" @default.
- W2892337247 creator A5002641481 @default.
- W2892337247 creator A5006694786 @default.
- W2892337247 creator A5014516945 @default.
- W2892337247 creator A5018498009 @default.
- W2892337247 creator A5024397817 @default.
- W2892337247 creator A5037412930 @default.
- W2892337247 creator A5040282784 @default.
- W2892337247 creator A5041891850 @default.
- W2892337247 creator A5043322773 @default.
- W2892337247 creator A5046387481 @default.
- W2892337247 creator A5053048077 @default.
- W2892337247 creator A5053799104 @default.
- W2892337247 creator A5063796179 @default.
- W2892337247 date "2018-09-10" @default.
- W2892337247 modified "2023-10-12" @default.
- W2892337247 title "Voxel-wise analysis of dynamic 18F-FET PET: a novel approach for non-invasive glioma characterisation" @default.
- W2892337247 cites W1015247680 @default.
- W2892337247 cites W1895931341 @default.
- W2892337247 cites W1950489527 @default.
- W2892337247 cites W1967362871 @default.
- W2892337247 cites W1976643892 @default.
- W2892337247 cites W1980185649 @default.
- W2892337247 cites W1987675206 @default.
- W2892337247 cites W2002322242 @default.
- W2892337247 cites W2025790089 @default.
- W2892337247 cites W2073695582 @default.
- W2892337247 cites W2086465998 @default.
- W2892337247 cites W2100858680 @default.
- W2892337247 cites W2123239916 @default.
- W2892337247 cites W2130918631 @default.
- W2892337247 cites W2132369953 @default.
- W2892337247 cites W2147387301 @default.
- W2892337247 cites W2154796225 @default.
- W2892337247 cites W2157078065 @default.
- W2892337247 cites W2166847050 @default.
- W2892337247 cites W2186262563 @default.
- W2892337247 cites W2188538530 @default.
- W2892337247 cites W2189395170 @default.
- W2892337247 cites W2200739180 @default.
- W2892337247 cites W2209087996 @default.
- W2892337247 cites W2278928422 @default.
- W2892337247 cites W2297267460 @default.
- W2892337247 cites W2315909455 @default.
- W2892337247 cites W2318879887 @default.
- W2892337247 cites W2337855347 @default.
- W2892337247 cites W2338175682 @default.
- W2892337247 cites W2366536035 @default.
- W2892337247 cites W2427680455 @default.
- W2892337247 cites W2460373250 @default.
- W2892337247 cites W2511690063 @default.
- W2892337247 cites W2517800773 @default.
- W2892337247 cites W2536503259 @default.
- W2892337247 cites W2551062084 @default.
- W2892337247 cites W2558811751 @default.
- W2892337247 cites W2565511293 @default.
- W2892337247 cites W2592239897 @default.
- W2892337247 cites W2620116065 @default.
- W2892337247 cites W2741792148 @default.
- W2892337247 cites W2745490360 @default.
- W2892337247 cites W2747998574 @default.
- W2892337247 cites W2763058945 @default.
- W2892337247 cites W2767361631 @default.
- W2892337247 cites W2793127683 @default.
- W2892337247 cites W2887445161 @default.
- W2892337247 doi "https://doi.org/10.1186/s13550-018-0444-y" @default.
- W2892337247 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6131687" @default.
- W2892337247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30203138" @default.
- W2892337247 hasPublicationYear "2018" @default.
- W2892337247 type Work @default.
- W2892337247 sameAs 2892337247 @default.
- W2892337247 citedByCount "19" @default.
- W2892337247 countsByYear W28923372472019 @default.
- W2892337247 countsByYear W28923372472020 @default.
- W2892337247 countsByYear W28923372472021 @default.
- W2892337247 countsByYear W28923372472022 @default.
- W2892337247 countsByYear W28923372472023 @default.
- W2892337247 crossrefType "journal-article" @default.
- W2892337247 hasAuthorship W2892337247A5002641481 @default.
- W2892337247 hasAuthorship W2892337247A5006694786 @default.
- W2892337247 hasAuthorship W2892337247A5014516945 @default.
- W2892337247 hasAuthorship W2892337247A5018498009 @default.
- W2892337247 hasAuthorship W2892337247A5024397817 @default.
- W2892337247 hasAuthorship W2892337247A5037412930 @default.
- W2892337247 hasAuthorship W2892337247A5040282784 @default.
- W2892337247 hasAuthorship W2892337247A5041891850 @default.
- W2892337247 hasAuthorship W2892337247A5043322773 @default.
- W2892337247 hasAuthorship W2892337247A5046387481 @default.
- W2892337247 hasAuthorship W2892337247A5053048077 @default.
- W2892337247 hasAuthorship W2892337247A5053799104 @default.
- W2892337247 hasAuthorship W2892337247A5063796179 @default.
- W2892337247 hasBestOaLocation W28923372471 @default.
- W2892337247 hasConcept C126838900 @default.
- W2892337247 hasConcept C18903297 @default.
- W2892337247 hasConcept C2777286243 @default.
- W2892337247 hasConcept C2778227246 @default.
- W2892337247 hasConcept C2989005 @default.
- W2892337247 hasConcept C502942594 @default.
- W2892337247 hasConcept C54170458 @default.