Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892337376> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2892337376 abstract "Let $N$ be a finite set, let $p in (0,1)$, and let $N_p$ denote a random binomial subset of $N$ where every element of $N$ is taken to belong to the subset independently with probability $p$ . This defines a product measure $mu_p$ on the power set of $N$, where for $mathcal{A} subseteq 2^N$ $mu_p(mathcal{A}) := Pr[N_p in mathcal{A}]$. In this paper we study upward-closed families $mathcal{A}$ for which all minimal sets in $mathcal{A}$ have size at most $k$, for some positive integer $k$. We prove that for such a family $mu_p(mathcal{A}) / p^k $ is a decreasing function, which implies a uniform bound on the coarseness of the thresholds of such families. We also prove a structure theorem which enables to identify in $mathcal{A}$ either a substantial subfamily $mathcal{A}_0$ for which the first moment method gives a good approximation of its measure, or a subfamily which can be well approximated by a family with all minimal sets of size strictly smaller than $k$. Finally, we relate the (fractional) expectation threshold and the probability threshold of such a family, using duality of linear programming. This is related to the threshold conjecture of Kahn and Kalai." @default.
- W2892337376 created "2018-09-27" @default.
- W2892337376 creator A5006254955 @default.
- W2892337376 creator A5067469358 @default.
- W2892337376 date "2013-12-09" @default.
- W2892337376 modified "2023-09-27" @default.
- W2892337376 title "Monotone properties with small minterms have a coarse threshold" @default.
- W2892337376 hasPublicationYear "2013" @default.
- W2892337376 type Work @default.
- W2892337376 sameAs 2892337376 @default.
- W2892337376 citedByCount "0" @default.
- W2892337376 crossrefType "posted-content" @default.
- W2892337376 hasAuthorship W2892337376A5006254955 @default.
- W2892337376 hasAuthorship W2892337376A5067469358 @default.
- W2892337376 hasConcept C105795698 @default.
- W2892337376 hasConcept C114614502 @default.
- W2892337376 hasConcept C118615104 @default.
- W2892337376 hasConcept C150591576 @default.
- W2892337376 hasConcept C177264268 @default.
- W2892337376 hasConcept C199360897 @default.
- W2892337376 hasConcept C2524010 @default.
- W2892337376 hasConcept C2778023678 @default.
- W2892337376 hasConcept C2780009758 @default.
- W2892337376 hasConcept C2780990831 @default.
- W2892337376 hasConcept C2781315470 @default.
- W2892337376 hasConcept C2834757 @default.
- W2892337376 hasConcept C33923547 @default.
- W2892337376 hasConcept C41008148 @default.
- W2892337376 hasConcept C77088390 @default.
- W2892337376 hasConcept C90673727 @default.
- W2892337376 hasConcept C97137487 @default.
- W2892337376 hasConceptScore W2892337376C105795698 @default.
- W2892337376 hasConceptScore W2892337376C114614502 @default.
- W2892337376 hasConceptScore W2892337376C118615104 @default.
- W2892337376 hasConceptScore W2892337376C150591576 @default.
- W2892337376 hasConceptScore W2892337376C177264268 @default.
- W2892337376 hasConceptScore W2892337376C199360897 @default.
- W2892337376 hasConceptScore W2892337376C2524010 @default.
- W2892337376 hasConceptScore W2892337376C2778023678 @default.
- W2892337376 hasConceptScore W2892337376C2780009758 @default.
- W2892337376 hasConceptScore W2892337376C2780990831 @default.
- W2892337376 hasConceptScore W2892337376C2781315470 @default.
- W2892337376 hasConceptScore W2892337376C2834757 @default.
- W2892337376 hasConceptScore W2892337376C33923547 @default.
- W2892337376 hasConceptScore W2892337376C41008148 @default.
- W2892337376 hasConceptScore W2892337376C77088390 @default.
- W2892337376 hasConceptScore W2892337376C90673727 @default.
- W2892337376 hasConceptScore W2892337376C97137487 @default.
- W2892337376 hasLocation W28923373761 @default.
- W2892337376 hasOpenAccess W2892337376 @default.
- W2892337376 hasPrimaryLocation W28923373761 @default.
- W2892337376 hasRelatedWork W1485751852 @default.
- W2892337376 hasRelatedWork W1713410551 @default.
- W2892337376 hasRelatedWork W2003041310 @default.
- W2892337376 hasRelatedWork W2010761108 @default.
- W2892337376 hasRelatedWork W2095094096 @default.
- W2892337376 hasRelatedWork W2104385173 @default.
- W2892337376 hasRelatedWork W2157421391 @default.
- W2892337376 hasRelatedWork W2274540040 @default.
- W2892337376 hasRelatedWork W2301931005 @default.
- W2892337376 hasRelatedWork W2548164011 @default.
- W2892337376 hasRelatedWork W2560249067 @default.
- W2892337376 hasRelatedWork W2896248502 @default.
- W2892337376 hasRelatedWork W2898374718 @default.
- W2892337376 hasRelatedWork W2949508640 @default.
- W2892337376 hasRelatedWork W2949748793 @default.
- W2892337376 hasRelatedWork W2951544366 @default.
- W2892337376 hasRelatedWork W3012109763 @default.
- W2892337376 hasRelatedWork W3033847703 @default.
- W2892337376 hasRelatedWork W3212552559 @default.
- W2892337376 hasRelatedWork W2123980360 @default.
- W2892337376 isParatext "false" @default.
- W2892337376 isRetracted "false" @default.
- W2892337376 magId "2892337376" @default.
- W2892337376 workType "article" @default.