Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892340305> ?p ?o ?g. }
- W2892340305 endingPage "3796" @default.
- W2892340305 startingPage "3786" @default.
- W2892340305 abstract "Let Ƥ = {p1, p2, . . .pn} and Q = {q1, q2 . . . qm} be two point sets in an arbitrary metric space. Let A represent the m × n pairwise distance matrix with Ai.j = d(pi, qj). Such distance matrices are commonly computed in software packages and have applications to learning image manifolds, handwriting recognition, and multi-dimensional unfolding, among other things. In an attempt to reduce their description size, we study low rank approximation of such matrices. Our main result is to show that for any underlying distance metric d, it is possible to achieve an additive error low rank approximation in sublinear time. We note that it is provably impossible to achieve such a guarantee in sublinear time for arbitrary matrices A, and our proof exploits special properties of distance matrices. We develop a recursive algorithm based on additive projection-cost preserving sampling. We then show that in general, relative error approximation in sublinear time is impossible for distance matrices, even if one allows for bicriteria solutions. Additionally, we show that if Ƥ = Q and d is the squared Euclidean distance, which is not a metric but rather the square of a metric, then a relative error bicriteria solution can be found in sublinear time. Finally, we empirically compare our algorithm with the singular value decomposition (SVD) and input sparsity time algorithms. Our algorithm is several hundred times faster than the SVD, and about 8-20 times faster than input sparsity methods on real-world and and synthetic datasets of size 108. Accuracy-wise, our algorithm is only slightly worse than that of the SVD (optimal) and input-sparsity time algorithms." @default.
- W2892340305 created "2018-09-27" @default.
- W2892340305 creator A5024805876 @default.
- W2892340305 creator A5079598728 @default.
- W2892340305 date "2018-12-03" @default.
- W2892340305 modified "2023-09-24" @default.
- W2892340305 title "Sublinear time low-rank approximation of distance matrices" @default.
- W2892340305 cites W1493892051 @default.
- W2892340305 cites W1979750072 @default.
- W2892340305 cites W1998269045 @default.
- W2892340305 cites W2001141328 @default.
- W2892340305 cites W2045390367 @default.
- W2892340305 cites W2062139226 @default.
- W2892340305 cites W2127935563 @default.
- W2892340305 cites W2150627493 @default.
- W2892340305 cites W2152799677 @default.
- W2892340305 cites W2155970279 @default.
- W2892340305 cites W2295512376 @default.
- W2892340305 cites W2605801782 @default.
- W2892340305 cites W2949809202 @default.
- W2892340305 cites W2950572233 @default.
- W2892340305 cites W2952601782 @default.
- W2892340305 cites W2962844620 @default.
- W2892340305 hasPublicationYear "2018" @default.
- W2892340305 type Work @default.
- W2892340305 sameAs 2892340305 @default.
- W2892340305 citedByCount "7" @default.
- W2892340305 countsByYear W28923403052019 @default.
- W2892340305 countsByYear W28923403052020 @default.
- W2892340305 countsByYear W28923403052021 @default.
- W2892340305 crossrefType "proceedings-article" @default.
- W2892340305 hasAuthorship W2892340305A5024805876 @default.
- W2892340305 hasAuthorship W2892340305A5079598728 @default.
- W2892340305 hasConcept C106487976 @default.
- W2892340305 hasConcept C111208986 @default.
- W2892340305 hasConcept C11413529 @default.
- W2892340305 hasConcept C114614502 @default.
- W2892340305 hasConcept C117160843 @default.
- W2892340305 hasConcept C120174047 @default.
- W2892340305 hasConcept C122383733 @default.
- W2892340305 hasConcept C148764684 @default.
- W2892340305 hasConcept C155281189 @default.
- W2892340305 hasConcept C159985019 @default.
- W2892340305 hasConcept C162324750 @default.
- W2892340305 hasConcept C164226766 @default.
- W2892340305 hasConcept C176217482 @default.
- W2892340305 hasConcept C192562407 @default.
- W2892340305 hasConcept C202444582 @default.
- W2892340305 hasConcept C21547014 @default.
- W2892340305 hasConcept C22789450 @default.
- W2892340305 hasConcept C2524010 @default.
- W2892340305 hasConcept C33923547 @default.
- W2892340305 hasConcept C5349765 @default.
- W2892340305 hasConcept C90199385 @default.
- W2892340305 hasConceptScore W2892340305C106487976 @default.
- W2892340305 hasConceptScore W2892340305C111208986 @default.
- W2892340305 hasConceptScore W2892340305C11413529 @default.
- W2892340305 hasConceptScore W2892340305C114614502 @default.
- W2892340305 hasConceptScore W2892340305C117160843 @default.
- W2892340305 hasConceptScore W2892340305C120174047 @default.
- W2892340305 hasConceptScore W2892340305C122383733 @default.
- W2892340305 hasConceptScore W2892340305C148764684 @default.
- W2892340305 hasConceptScore W2892340305C155281189 @default.
- W2892340305 hasConceptScore W2892340305C159985019 @default.
- W2892340305 hasConceptScore W2892340305C162324750 @default.
- W2892340305 hasConceptScore W2892340305C164226766 @default.
- W2892340305 hasConceptScore W2892340305C176217482 @default.
- W2892340305 hasConceptScore W2892340305C192562407 @default.
- W2892340305 hasConceptScore W2892340305C202444582 @default.
- W2892340305 hasConceptScore W2892340305C21547014 @default.
- W2892340305 hasConceptScore W2892340305C22789450 @default.
- W2892340305 hasConceptScore W2892340305C2524010 @default.
- W2892340305 hasConceptScore W2892340305C33923547 @default.
- W2892340305 hasConceptScore W2892340305C5349765 @default.
- W2892340305 hasConceptScore W2892340305C90199385 @default.
- W2892340305 hasLocation W28923403051 @default.
- W2892340305 hasOpenAccess W2892340305 @default.
- W2892340305 hasPrimaryLocation W28923403051 @default.
- W2892340305 hasRelatedWork W1937322722 @default.
- W2892340305 hasRelatedWork W2003895866 @default.
- W2892340305 hasRelatedWork W2100282471 @default.
- W2892340305 hasRelatedWork W2101043704 @default.
- W2892340305 hasRelatedWork W2157988812 @default.
- W2892340305 hasRelatedWork W2531542820 @default.
- W2892340305 hasRelatedWork W2580749366 @default.
- W2892340305 hasRelatedWork W2611550664 @default.
- W2892340305 hasRelatedWork W2949813222 @default.
- W2892340305 hasRelatedWork W2950180286 @default.
- W2892340305 hasRelatedWork W2963258773 @default.
- W2892340305 hasRelatedWork W2963474821 @default.
- W2892340305 hasRelatedWork W2991693986 @default.
- W2892340305 hasRelatedWork W3004722026 @default.
- W2892340305 hasRelatedWork W3045956489 @default.
- W2892340305 hasRelatedWork W3123070668 @default.
- W2892340305 hasRelatedWork W3163275449 @default.
- W2892340305 hasRelatedWork W3201566834 @default.
- W2892340305 hasRelatedWork W37129894 @default.
- W2892340305 hasRelatedWork W834696675 @default.