Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892340710> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2892340710 endingPage "964" @default.
- W2892340710 startingPage "958" @default.
- W2892340710 abstract "Abstract Carbon spot price forecasting result is important for both policymakers and market participants. However, because of the complex features of carbon spot price, accurate forecasting is very difficult. To achieve a better prediction precision, a hybrid model combined with complete ensemble empirical mode decomposition (CEEMD), co-integration model (CIM), generalized autoregressive conditional heteroskedasticity model (GARCH), and grey neural network (GNN) optimized by ant colony algorithm (ACA) is proposed. Then it is validated by using data collected from European Union emission trading scheme (EU ETS). The results indicate that the performance of the chosen model is remarkably better than that of other models. Therefore, the hybrid model could be used more frequently for carbon spot price forecasting in the future." @default.
- W2892340710 created "2018-09-27" @default.
- W2892340710 creator A5005944481 @default.
- W2892340710 creator A5009626163 @default.
- W2892340710 creator A5023930365 @default.
- W2892340710 creator A5035153376 @default.
- W2892340710 date "2018-12-01" @default.
- W2892340710 modified "2023-10-16" @default.
- W2892340710 title "A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting" @default.
- W2892340710 cites W1973048907 @default.
- W2892340710 cites W1987238956 @default.
- W2892340710 cites W1999996900 @default.
- W2892340710 cites W2000774474 @default.
- W2892340710 cites W2013377700 @default.
- W2892340710 cites W2028068740 @default.
- W2892340710 cites W2071939326 @default.
- W2892340710 cites W2091391445 @default.
- W2892340710 cites W2097736597 @default.
- W2892340710 cites W2107941094 @default.
- W2892340710 cites W2110603299 @default.
- W2892340710 cites W2202574419 @default.
- W2892340710 cites W2288054910 @default.
- W2892340710 cites W2329188710 @default.
- W2892340710 cites W2331700789 @default.
- W2892340710 cites W2520651589 @default.
- W2892340710 cites W2578393402 @default.
- W2892340710 cites W2586354609 @default.
- W2892340710 cites W2740977868 @default.
- W2892340710 cites W2751846330 @default.
- W2892340710 cites W2781854549 @default.
- W2892340710 cites W2791018962 @default.
- W2892340710 cites W2795470013 @default.
- W2892340710 cites W2795470161 @default.
- W2892340710 cites W2802240480 @default.
- W2892340710 cites W2805711681 @default.
- W2892340710 cites W2807831972 @default.
- W2892340710 cites W3125347602 @default.
- W2892340710 cites W3125368651 @default.
- W2892340710 doi "https://doi.org/10.1016/j.jclepro.2018.09.071" @default.
- W2892340710 hasPublicationYear "2018" @default.
- W2892340710 type Work @default.
- W2892340710 sameAs 2892340710 @default.
- W2892340710 citedByCount "95" @default.
- W2892340710 countsByYear W28923407102019 @default.
- W2892340710 countsByYear W28923407102020 @default.
- W2892340710 countsByYear W28923407102021 @default.
- W2892340710 countsByYear W28923407102022 @default.
- W2892340710 countsByYear W28923407102023 @default.
- W2892340710 crossrefType "journal-article" @default.
- W2892340710 hasAuthorship W2892340710A5005944481 @default.
- W2892340710 hasAuthorship W2892340710A5009626163 @default.
- W2892340710 hasAuthorship W2892340710A5023930365 @default.
- W2892340710 hasAuthorship W2892340710A5035153376 @default.
- W2892340710 hasConcept C104267543 @default.
- W2892340710 hasConcept C106159729 @default.
- W2892340710 hasConcept C106306483 @default.
- W2892340710 hasConcept C149782125 @default.
- W2892340710 hasConcept C154945302 @default.
- W2892340710 hasConcept C162324750 @default.
- W2892340710 hasConcept C175223733 @default.
- W2892340710 hasConcept C180075932 @default.
- W2892340710 hasConcept C41008148 @default.
- W2892340710 hasConcept C50644808 @default.
- W2892340710 hasConcept C554190296 @default.
- W2892340710 hasConcept C76155785 @default.
- W2892340710 hasConceptScore W2892340710C104267543 @default.
- W2892340710 hasConceptScore W2892340710C106159729 @default.
- W2892340710 hasConceptScore W2892340710C106306483 @default.
- W2892340710 hasConceptScore W2892340710C149782125 @default.
- W2892340710 hasConceptScore W2892340710C154945302 @default.
- W2892340710 hasConceptScore W2892340710C162324750 @default.
- W2892340710 hasConceptScore W2892340710C175223733 @default.
- W2892340710 hasConceptScore W2892340710C180075932 @default.
- W2892340710 hasConceptScore W2892340710C41008148 @default.
- W2892340710 hasConceptScore W2892340710C50644808 @default.
- W2892340710 hasConceptScore W2892340710C554190296 @default.
- W2892340710 hasConceptScore W2892340710C76155785 @default.
- W2892340710 hasFunder F4320321001 @default.
- W2892340710 hasLocation W28923407101 @default.
- W2892340710 hasOpenAccess W2892340710 @default.
- W2892340710 hasPrimaryLocation W28923407101 @default.
- W2892340710 hasRelatedWork W1585799505 @default.
- W2892340710 hasRelatedWork W2078069953 @default.
- W2892340710 hasRelatedWork W2798386831 @default.
- W2892340710 hasRelatedWork W3122247430 @default.
- W2892340710 hasRelatedWork W3123385163 @default.
- W2892340710 hasRelatedWork W3123487525 @default.
- W2892340710 hasRelatedWork W3125911262 @default.
- W2892340710 hasRelatedWork W3143426705 @default.
- W2892340710 hasRelatedWork W4297840745 @default.
- W2892340710 hasRelatedWork W1645750237 @default.
- W2892340710 hasVolume "204" @default.
- W2892340710 isParatext "false" @default.
- W2892340710 isRetracted "false" @default.
- W2892340710 magId "2892340710" @default.
- W2892340710 workType "article" @default.