Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892341857> ?p ?o ?g. }
- W2892341857 endingPage "36" @default.
- W2892341857 startingPage "1" @default.
- W2892341857 abstract "The field of machine learning is witnessing its golden era as deep learning slowly becomes the leader in this domain. Deep learning uses multiple layers to represent the abstractions of data to build computational models. Some key enabler deep learning algorithms such as generative adversarial networks, convolutional neural networks, and model transfers have completely changed our perception of information processing. However, there exists an aperture of understanding behind this tremendously fast-paced domain, because it was never previously represented from a multiscope perspective. The lack of core understanding renders these powerful methods as black-box machines that inhibit development at a fundamental level. Moreover, deep learning has repeatedly been perceived as a silver bullet to all stumbling blocks in machine learning, which is far from the truth. This article presents a comprehensive review of historical and recent state-of-the-art approaches in visual, audio, and text processing; social network analysis; and natural language processing, followed by the in-depth analysis on pivoting and groundbreaking advances in deep learning applications. It was also undertaken to review the issues faced in deep learning such as unsupervised learning, black-box models, and online learning and to illustrate how these challenges can be transformed into prolific future research avenues." @default.
- W2892341857 created "2018-09-27" @default.
- W2892341857 creator A5009505287 @default.
- W2892341857 creator A5027427111 @default.
- W2892341857 creator A5036221136 @default.
- W2892341857 creator A5045116898 @default.
- W2892341857 creator A5048066942 @default.
- W2892341857 creator A5049219173 @default.
- W2892341857 creator A5063696031 @default.
- W2892341857 creator A5084955278 @default.
- W2892341857 creator A5087345630 @default.
- W2892341857 date "2018-09-18" @default.
- W2892341857 modified "2023-10-18" @default.
- W2892341857 title "A Survey on Deep Learning" @default.
- W2892341857 cites W1485981043 @default.
- W2892341857 cites W1522734439 @default.
- W2892341857 cites W1536680647 @default.
- W2892341857 cites W1591178201 @default.
- W2892341857 cites W168227540 @default.
- W2892341857 cites W1745334888 @default.
- W2892341857 cites W1903029394 @default.
- W2892341857 cites W1947481528 @default.
- W2892341857 cites W1973445088 @default.
- W2892341857 cites W1978516841 @default.
- W2892341857 cites W1980776243 @default.
- W2892341857 cites W1995341919 @default.
- W2892341857 cites W1995562189 @default.
- W2892341857 cites W2004141349 @default.
- W2892341857 cites W2014307680 @default.
- W2892341857 cites W2016053056 @default.
- W2892341857 cites W2031647436 @default.
- W2892341857 cites W2033597569 @default.
- W2892341857 cites W2038794597 @default.
- W2892341857 cites W2040870580 @default.
- W2892341857 cites W2062017159 @default.
- W2892341857 cites W2071709160 @default.
- W2892341857 cites W2073137089 @default.
- W2892341857 cites W2074551195 @default.
- W2892341857 cites W2074788634 @default.
- W2892341857 cites W2075645037 @default.
- W2892341857 cites W2076063813 @default.
- W2892341857 cites W2083842231 @default.
- W2892341857 cites W2094756095 @default.
- W2892341857 cites W2097117768 @default.
- W2892341857 cites W2101926813 @default.
- W2892341857 cites W2102605133 @default.
- W2892341857 cites W2112796928 @default.
- W2892341857 cites W2113907273 @default.
- W2892341857 cites W2115579991 @default.
- W2892341857 cites W2116360511 @default.
- W2892341857 cites W2118023920 @default.
- W2892341857 cites W2119112357 @default.
- W2892341857 cites W2119554284 @default.
- W2892341857 cites W2119615570 @default.
- W2892341857 cites W2120480077 @default.
- W2892341857 cites W2128273577 @default.
- W2892341857 cites W2136189984 @default.
- W2892341857 cites W2136922672 @default.
- W2892341857 cites W2139906443 @default.
- W2892341857 cites W2143612262 @default.
- W2892341857 cites W2144763279 @default.
- W2892341857 cites W2145607950 @default.
- W2892341857 cites W2147768505 @default.
- W2892341857 cites W2155893237 @default.
- W2892341857 cites W2157331557 @default.
- W2892341857 cites W2160815625 @default.
- W2892341857 cites W2161969291 @default.
- W2892341857 cites W2162741153 @default.
- W2892341857 cites W2186845332 @default.
- W2892341857 cites W2194775991 @default.
- W2892341857 cites W22040386 @default.
- W2892341857 cites W2229241729 @default.
- W2892341857 cites W2250384498 @default.
- W2892341857 cites W2251287417 @default.
- W2892341857 cites W2287418003 @default.
- W2892341857 cites W2295001676 @default.
- W2892341857 cites W2309023520 @default.
- W2892341857 cites W2342662179 @default.
- W2892341857 cites W2345010043 @default.
- W2892341857 cites W2394932179 @default.
- W2892341857 cites W2401520370 @default.
- W2892341857 cites W2406293284 @default.
- W2892341857 cites W2460580556 @default.
- W2892341857 cites W2460742184 @default.
- W2892341857 cites W2470894770 @default.
- W2892341857 cites W2485014704 @default.
- W2892341857 cites W2502949459 @default.
- W2892341857 cites W2510001427 @default.
- W2892341857 cites W2550397165 @default.
- W2892341857 cites W2563633466 @default.
- W2892341857 cites W2583007528 @default.
- W2892341857 cites W2584304579 @default.
- W2892341857 cites W2586835517 @default.
- W2892341857 cites W2599685671 @default.
- W2892341857 cites W2604249033 @default.
- W2892341857 cites W2607071059 @default.
- W2892341857 cites W2612039592 @default.
- W2892341857 cites W2726943725 @default.