Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892350739> ?p ?o ?g. }
- W2892350739 endingPage "2034" @default.
- W2892350739 startingPage "2008" @default.
- W2892350739 abstract "One of the main goals of archeomagnetism is to document the secular changes of Earth’s magnetic field by laboratory analysis of the magnetization carried by archeological artefacts. Typical techniques for creating a time-dependent model assume a prescribed temporal discretization which, when coupled with sparse data coverage, require strong regularization generally applied over the entire time-series in order to ensure smoothness. Such techniques make it difficult to characterize uncertainty and frequency content, and robustly detect rapid changes. Key to proper modelling (and physical understanding) is a method that places a minimum level of regularization on any fit to the data. Here we apply a transdimensional Bayesian technique based on piecewise linear interpolation to sparse archeointensity data sets, in which the temporal complexity of the model is not set a priori, but is self-selected by the data. The method produces two key outputs: (i) a posterior distribution of intensity as a function of time, a useful tool for archeomagnetic dating, whose statistics are smooth but formally unregularized and (ii) by including the data ages in the model of unknown parameters, the method also produces posterior age statistics of each individual contributing datum. We test the technique using synthetic data sets and confirm agreement of our method with an integrated likelihood approach. We then apply the method to three archeomagnetic data sets all reduced to a single location: one temporally well-sampled within 700 km from Paris (here referred to as Paris700), one that is temporally sparse centred on Hawaii, and a third (from Lübeck, Germany and Paris700) that has additional ordering constraints on age from stratification. Compared with other methods, our average posterior distributions largely agree, however our credible intervals appear to much better reflect the uncertainty during periods of sparse data coverage. Because each ensemble member of the posterior distribution is piecewise linear, we only fit oscillations when required by the data. As an example, we show that an oscillatory signal, associated with temporally localized intensity maxima reported for a sparse Hawaiian data set, is not required by the data. However, we do recover the previously reported oscillation of period 260 yr for the Paris700 data set and compute the probability distribution of the period of oscillation. We further demonstrate that such an oscillation is unresolved when accounting for age uncertainty by using a fixed age and with an artificially inflated error budget on intensity." @default.
- W2892350739 created "2018-09-27" @default.
- W2892350739 creator A5035390538 @default.
- W2892350739 creator A5073181839 @default.
- W2892350739 creator A5075554992 @default.
- W2892350739 creator A5079297873 @default.
- W2892350739 date "2018-09-18" @default.
- W2892350739 modified "2023-10-18" @default.
- W2892350739 title "Transdimensional inference of archeomagnetic intensity change" @default.
- W2892350739 cites W1544282118 @default.
- W2892350739 cites W1553062682 @default.
- W2892350739 cites W1612479901 @default.
- W2892350739 cites W1668662863 @default.
- W2892350739 cites W1687768326 @default.
- W2892350739 cites W1823712548 @default.
- W2892350739 cites W1848245098 @default.
- W2892350739 cites W1932508272 @default.
- W2892350739 cites W1971072157 @default.
- W2892350739 cites W1975975737 @default.
- W2892350739 cites W1979070161 @default.
- W2892350739 cites W1990410916 @default.
- W2892350739 cites W2003054657 @default.
- W2892350739 cites W2011301426 @default.
- W2892350739 cites W2015133676 @default.
- W2892350739 cites W2025796487 @default.
- W2892350739 cites W2032286931 @default.
- W2892350739 cites W2038421862 @default.
- W2892350739 cites W2041046956 @default.
- W2892350739 cites W2042342067 @default.
- W2892350739 cites W2052665986 @default.
- W2892350739 cites W2061190113 @default.
- W2892350739 cites W2069241585 @default.
- W2892350739 cites W2080375687 @default.
- W2892350739 cites W2083587732 @default.
- W2892350739 cites W2085745856 @default.
- W2892350739 cites W2088688901 @default.
- W2892350739 cites W2089937383 @default.
- W2892350739 cites W2094646879 @default.
- W2892350739 cites W2106407799 @default.
- W2892350739 cites W2106706098 @default.
- W2892350739 cites W2106822551 @default.
- W2892350739 cites W2111038247 @default.
- W2892350739 cites W2112759806 @default.
- W2892350739 cites W2122450914 @default.
- W2892350739 cites W2135020726 @default.
- W2892350739 cites W2142589746 @default.
- W2892350739 cites W2146499315 @default.
- W2892350739 cites W2160217617 @default.
- W2892350739 cites W2162336303 @default.
- W2892350739 cites W2164272473 @default.
- W2892350739 cites W2168447320 @default.
- W2892350739 cites W2168784807 @default.
- W2892350739 cites W2409839663 @default.
- W2892350739 cites W2425772716 @default.
- W2892350739 cites W2465811202 @default.
- W2892350739 cites W2738017896 @default.
- W2892350739 cites W2755477563 @default.
- W2892350739 cites W2790564281 @default.
- W2892350739 cites W2805755930 @default.
- W2892350739 cites W3104326099 @default.
- W2892350739 cites W4299551239 @default.
- W2892350739 doi "https://doi.org/10.1093/gji/ggy383" @default.
- W2892350739 hasPublicationYear "2018" @default.
- W2892350739 type Work @default.
- W2892350739 sameAs 2892350739 @default.
- W2892350739 citedByCount "28" @default.
- W2892350739 countsByYear W28923507392018 @default.
- W2892350739 countsByYear W28923507392019 @default.
- W2892350739 countsByYear W28923507392020 @default.
- W2892350739 countsByYear W28923507392021 @default.
- W2892350739 countsByYear W28923507392022 @default.
- W2892350739 countsByYear W28923507392023 @default.
- W2892350739 crossrefType "journal-article" @default.
- W2892350739 hasAuthorship W2892350739A5035390538 @default.
- W2892350739 hasAuthorship W2892350739A5073181839 @default.
- W2892350739 hasAuthorship W2892350739A5075554992 @default.
- W2892350739 hasAuthorship W2892350739A5079297873 @default.
- W2892350739 hasBestOaLocation W28923507391 @default.
- W2892350739 hasConcept C120665830 @default.
- W2892350739 hasConcept C121332964 @default.
- W2892350739 hasConcept C127313418 @default.
- W2892350739 hasConcept C13280743 @default.
- W2892350739 hasConcept C154945302 @default.
- W2892350739 hasConcept C2776214188 @default.
- W2892350739 hasConcept C41008148 @default.
- W2892350739 hasConcept C93038891 @default.
- W2892350739 hasConceptScore W2892350739C120665830 @default.
- W2892350739 hasConceptScore W2892350739C121332964 @default.
- W2892350739 hasConceptScore W2892350739C127313418 @default.
- W2892350739 hasConceptScore W2892350739C13280743 @default.
- W2892350739 hasConceptScore W2892350739C154945302 @default.
- W2892350739 hasConceptScore W2892350739C2776214188 @default.
- W2892350739 hasConceptScore W2892350739C41008148 @default.
- W2892350739 hasConceptScore W2892350739C93038891 @default.
- W2892350739 hasFunder F4320326284 @default.
- W2892350739 hasFunder F4320334631 @default.
- W2892350739 hasFunder F4320335254 @default.
- W2892350739 hasIssue "3" @default.