Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892351892> ?p ?o ?g. }
- W2892351892 abstract "Abstract Spectroscopy is indispensable for determining atomic configurations, chemical bondings, and vibrational behaviours, which are crucial information for materials development. Despite their importance, the interpretation of spectra using “human-driven” methods, such as the manual comparison of experimental spectra with reference/simulated spectra, is difficult due to the explosive increase in the number of experimental spectra to be observed. To overcome the limitations of the “human-driven” approach, we develop a new “data-driven” approach based on machine learning techniques by combining the layer clustering and decision tree methods. The proposed method is applied to the 46 oxygen-K edges of the ELNES/XANES spectra of oxide compounds. With this method, the spectra can be interpreted in accordance with the material information. Furthermore, we demonstrate that our method can predict spectral features from the material information. Our approach has the potential to provide information about a material that cannot be determined manually as well as predict a plausible spectrum from the geometric information alone." @default.
- W2892351892 created "2018-09-27" @default.
- W2892351892 creator A5007191821 @default.
- W2892351892 creator A5016192699 @default.
- W2892351892 creator A5046950265 @default.
- W2892351892 creator A5070597006 @default.
- W2892351892 date "2018-09-06" @default.
- W2892351892 modified "2023-10-17" @default.
- W2892351892 title "Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy" @default.
- W2892351892 cites W1678620623 @default.
- W2892351892 cites W1966900138 @default.
- W2892351892 cites W1973737002 @default.
- W2892351892 cites W1981368803 @default.
- W2892351892 cites W1985887937 @default.
- W2892351892 cites W2002830978 @default.
- W2892351892 cites W2013255353 @default.
- W2892351892 cites W2016023958 @default.
- W2892351892 cites W2032212746 @default.
- W2892351892 cites W2037621685 @default.
- W2892351892 cites W2054779318 @default.
- W2892351892 cites W2057037833 @default.
- W2892351892 cites W2074616700 @default.
- W2892351892 cites W2077011520 @default.
- W2892351892 cites W2078129516 @default.
- W2892351892 cites W2079444422 @default.
- W2892351892 cites W2095107619 @default.
- W2892351892 cites W2100828578 @default.
- W2892351892 cites W2104611665 @default.
- W2892351892 cites W2119320008 @default.
- W2892351892 cites W2128592580 @default.
- W2892351892 cites W2162314344 @default.
- W2892351892 cites W2276944336 @default.
- W2892351892 cites W2299676960 @default.
- W2892351892 cites W2337110853 @default.
- W2892351892 cites W2406005853 @default.
- W2892351892 cites W2437591545 @default.
- W2892351892 cites W2511536031 @default.
- W2892351892 cites W2550668110 @default.
- W2892351892 cites W2593569004 @default.
- W2892351892 cites W2757533756 @default.
- W2892351892 cites W2766518642 @default.
- W2892351892 cites W2769275566 @default.
- W2892351892 cites W2769410511 @default.
- W2892351892 cites W2786146804 @default.
- W2892351892 cites W2963327119 @default.
- W2892351892 cites W4231032259 @default.
- W2892351892 cites W4241711684 @default.
- W2892351892 cites W4250521397 @default.
- W2892351892 cites W619106852 @default.
- W2892351892 cites W639767525 @default.
- W2892351892 doi "https://doi.org/10.1038/s41598-018-30994-6" @default.
- W2892351892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6127203" @default.
- W2892351892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30190483" @default.
- W2892351892 hasPublicationYear "2018" @default.
- W2892351892 type Work @default.
- W2892351892 sameAs 2892351892 @default.
- W2892351892 citedByCount "37" @default.
- W2892351892 countsByYear W28923518922019 @default.
- W2892351892 countsByYear W28923518922020 @default.
- W2892351892 countsByYear W28923518922021 @default.
- W2892351892 countsByYear W28923518922022 @default.
- W2892351892 countsByYear W28923518922023 @default.
- W2892351892 crossrefType "journal-article" @default.
- W2892351892 hasAuthorship W2892351892A5007191821 @default.
- W2892351892 hasAuthorship W2892351892A5016192699 @default.
- W2892351892 hasAuthorship W2892351892A5046950265 @default.
- W2892351892 hasAuthorship W2892351892A5070597006 @default.
- W2892351892 hasBestOaLocation W28923518921 @default.
- W2892351892 hasConcept C110715899 @default.
- W2892351892 hasConcept C121332964 @default.
- W2892351892 hasConcept C124101348 @default.
- W2892351892 hasConcept C1276947 @default.
- W2892351892 hasConcept C154238967 @default.
- W2892351892 hasConcept C154945302 @default.
- W2892351892 hasConcept C178790620 @default.
- W2892351892 hasConcept C185592680 @default.
- W2892351892 hasConcept C199360897 @default.
- W2892351892 hasConcept C2164484 @default.
- W2892351892 hasConcept C32891209 @default.
- W2892351892 hasConcept C41008148 @default.
- W2892351892 hasConcept C4839761 @default.
- W2892351892 hasConcept C527412718 @default.
- W2892351892 hasConcept C62520636 @default.
- W2892351892 hasConcept C73555534 @default.
- W2892351892 hasConcept C76155785 @default.
- W2892351892 hasConceptScore W2892351892C110715899 @default.
- W2892351892 hasConceptScore W2892351892C121332964 @default.
- W2892351892 hasConceptScore W2892351892C124101348 @default.
- W2892351892 hasConceptScore W2892351892C1276947 @default.
- W2892351892 hasConceptScore W2892351892C154238967 @default.
- W2892351892 hasConceptScore W2892351892C154945302 @default.
- W2892351892 hasConceptScore W2892351892C178790620 @default.
- W2892351892 hasConceptScore W2892351892C185592680 @default.
- W2892351892 hasConceptScore W2892351892C199360897 @default.
- W2892351892 hasConceptScore W2892351892C2164484 @default.
- W2892351892 hasConceptScore W2892351892C32891209 @default.
- W2892351892 hasConceptScore W2892351892C41008148 @default.
- W2892351892 hasConceptScore W2892351892C4839761 @default.
- W2892351892 hasConceptScore W2892351892C527412718 @default.
- W2892351892 hasConceptScore W2892351892C62520636 @default.