Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892357023> ?p ?o ?g. }
- W2892357023 endingPage "420" @default.
- W2892357023 startingPage "401" @default.
- W2892357023 abstract "In this paper, we consider numerical simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer model. Matrix acidization in carbonate reservoirs is a widely practiced technique in the product enhancement of the oil and gas reservoir. A wormhole, i.e. a flow channel with high porosity, is generated during reactive dissolution of carbonates by the action of the injected acid. In the wormhole forming process, the porosity changes non-uniformly in space, and it even becomes close to unity in the central regions of a wormhole. The Darcy–Brinkman–Forchheimer model accounts for both the porous media and clear fluid area, so it can be used to model wormhole propagation perfectly. This model, however, strongly depends on porosity. Therefore, the time schemes for solving the evolutionary equation of porosity have a significant effect on accuracy and stability of the numerical simulation for wormhole propagation. We propose a semi-analytic time scheme, which solves the porosity equation analytically at each time step for given acid concentration. The proposed numerical method can improve the accuracy and stability of numerical simulation significantly. For theoretical analysis of the proposed time scheme for the wormhole simulation, we first reconstruct the analytical functions of porosity to analyze the time error of the porosity, and on the basis of error estimates of porosity, we employ a coupled analysis approach to achieve the estimates of pressure, velocity and solute concentration. The time error estimates for velocity, pressure, concentration and porosity are obtained in different norms. Finally, numerical results are provided to verify the effectiveness of the proposed scheme." @default.
- W2892357023 created "2018-09-27" @default.
- W2892357023 creator A5045760110 @default.
- W2892357023 creator A5050685550 @default.
- W2892357023 creator A5057212913 @default.
- W2892357023 date "2019-03-01" @default.
- W2892357023 modified "2023-09-30" @default.
- W2892357023 title "A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy–Brinkman–Forchheimer model" @default.
- W2892357023 cites W1561561119 @default.
- W2892357023 cites W1788555800 @default.
- W2892357023 cites W1916955807 @default.
- W2892357023 cites W1982241811 @default.
- W2892357023 cites W1986277629 @default.
- W2892357023 cites W1995682074 @default.
- W2892357023 cites W1999559145 @default.
- W2892357023 cites W2000329342 @default.
- W2892357023 cites W2010945250 @default.
- W2892357023 cites W2031437911 @default.
- W2892357023 cites W2051917325 @default.
- W2892357023 cites W2055848256 @default.
- W2892357023 cites W2062626532 @default.
- W2892357023 cites W2066829058 @default.
- W2892357023 cites W2079447366 @default.
- W2892357023 cites W2087147430 @default.
- W2892357023 cites W2097911916 @default.
- W2892357023 cites W2129288403 @default.
- W2892357023 cites W2175708375 @default.
- W2892357023 cites W2598793171 @default.
- W2892357023 cites W2640580772 @default.
- W2892357023 cites W3099013315 @default.
- W2892357023 cites W3100147603 @default.
- W2892357023 cites W31196836 @default.
- W2892357023 doi "https://doi.org/10.1016/j.cam.2018.08.055" @default.
- W2892357023 hasPublicationYear "2019" @default.
- W2892357023 type Work @default.
- W2892357023 sameAs 2892357023 @default.
- W2892357023 citedByCount "17" @default.
- W2892357023 countsByYear W28923570232019 @default.
- W2892357023 countsByYear W28923570232020 @default.
- W2892357023 countsByYear W28923570232021 @default.
- W2892357023 countsByYear W28923570232022 @default.
- W2892357023 countsByYear W28923570232023 @default.
- W2892357023 crossrefType "journal-article" @default.
- W2892357023 hasAuthorship W2892357023A5045760110 @default.
- W2892357023 hasAuthorship W2892357023A5050685550 @default.
- W2892357023 hasAuthorship W2892357023A5057212913 @default.
- W2892357023 hasBestOaLocation W28923570231 @default.
- W2892357023 hasConcept C105569014 @default.
- W2892357023 hasConcept C106487976 @default.
- W2892357023 hasConcept C112972136 @default.
- W2892357023 hasConcept C119857082 @default.
- W2892357023 hasConcept C121332964 @default.
- W2892357023 hasConcept C127313418 @default.
- W2892357023 hasConcept C134306372 @default.
- W2892357023 hasConcept C159985019 @default.
- W2892357023 hasConcept C183447037 @default.
- W2892357023 hasConcept C187320778 @default.
- W2892357023 hasConcept C192562407 @default.
- W2892357023 hasConcept C29013271 @default.
- W2892357023 hasConcept C33923547 @default.
- W2892357023 hasConcept C41008148 @default.
- W2892357023 hasConcept C500300565 @default.
- W2892357023 hasConcept C57879066 @default.
- W2892357023 hasConcept C6648577 @default.
- W2892357023 hasConcept C74650414 @default.
- W2892357023 hasConceptScore W2892357023C105569014 @default.
- W2892357023 hasConceptScore W2892357023C106487976 @default.
- W2892357023 hasConceptScore W2892357023C112972136 @default.
- W2892357023 hasConceptScore W2892357023C119857082 @default.
- W2892357023 hasConceptScore W2892357023C121332964 @default.
- W2892357023 hasConceptScore W2892357023C127313418 @default.
- W2892357023 hasConceptScore W2892357023C134306372 @default.
- W2892357023 hasConceptScore W2892357023C159985019 @default.
- W2892357023 hasConceptScore W2892357023C183447037 @default.
- W2892357023 hasConceptScore W2892357023C187320778 @default.
- W2892357023 hasConceptScore W2892357023C192562407 @default.
- W2892357023 hasConceptScore W2892357023C29013271 @default.
- W2892357023 hasConceptScore W2892357023C33923547 @default.
- W2892357023 hasConceptScore W2892357023C41008148 @default.
- W2892357023 hasConceptScore W2892357023C500300565 @default.
- W2892357023 hasConceptScore W2892357023C57879066 @default.
- W2892357023 hasConceptScore W2892357023C6648577 @default.
- W2892357023 hasConceptScore W2892357023C74650414 @default.
- W2892357023 hasFunder F4320321001 @default.
- W2892357023 hasLocation W28923570231 @default.
- W2892357023 hasLocation W28923570232 @default.
- W2892357023 hasOpenAccess W2892357023 @default.
- W2892357023 hasPrimaryLocation W28923570231 @default.
- W2892357023 hasRelatedWork W2003558698 @default.
- W2892357023 hasRelatedWork W2008388845 @default.
- W2892357023 hasRelatedWork W2025957286 @default.
- W2892357023 hasRelatedWork W2028686659 @default.
- W2892357023 hasRelatedWork W2049019560 @default.
- W2892357023 hasRelatedWork W2059734446 @default.
- W2892357023 hasRelatedWork W2085170449 @default.
- W2892357023 hasRelatedWork W2228156749 @default.
- W2892357023 hasRelatedWork W2388508898 @default.
- W2892357023 hasRelatedWork W3016609273 @default.