Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892368055> ?p ?o ?g. }
- W2892368055 endingPage "2335" @default.
- W2892368055 startingPage "2322" @default.
- W2892368055 abstract "Essentials•Nitric oxide synthesis controls protein disulfide isomerase (PDI) function.•Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity.•S‐nitrosylated PDI inhibits platelet function and thrombosis.•Nitric oxide maintains vascular quiescence in part through inhibition of PDI.Summary: BackgroundProtein disulfide isomerase (PDI) plays an essential role in thrombus formation, and PDI inhibition is being evaluated clinically as a novel anticoagulant strategy. However, little is known about the regulation of PDI in the vasculature. Thiols within the catalytic motif of PDI are essential for its role in thrombosis. These same thiols bind nitric oxide (NO), which is a potent regulator of vessel function. To determine whether regulation of PDI represents a mechanism by which NO controls vascular quiescence, we evaluated the effect of NO on PDI function in endothelial cells and platelets, and thrombus formation in vivo.AimTo assess the effect of S‐nitrosylation on the regulation of PDI and other thiol isomerases in the vasculature.Methods and resultsThe role of endogenous NO in PDI activity was evaluated by incubating endothelium with an NO scavenger, which resulted in exposure of free thiols, increased thiol isomerase activity, and enhanced thrombin generation on the cell membrane. Conversely, exposure of endothelium to NO+ carriers or elevation of endogenous NO levels by induction of NO synthesis resulted in S‐nitrosylation of PDI and decreased surface thiol reductase activity. S‐nitrosylation of platelet PDI inhibited its reductase activity, and S‐nitrosylated PDI interfered with platelet aggregation, α‐granule release, and thrombin generation on platelets. S‐nitrosylated PDI also blocked laser‐induced thrombus formation when infused into mice. S‐nitrosylated ERp5 and ERp57 were found to have similar inhibitory activity.ConclusionsThese studies identify NO as a critical regulator of vascular PDI, and show that regulation of PDI function is an important mechanism by which NO maintains vascular quiescence. Essentials•Nitric oxide synthesis controls protein disulfide isomerase (PDI) function.•Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity.•S‐nitrosylated PDI inhibits platelet function and thrombosis.•Nitric oxide maintains vascular quiescence in part through inhibition of PDI. •Nitric oxide synthesis controls protein disulfide isomerase (PDI) function.•Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity.•S‐nitrosylated PDI inhibits platelet function and thrombosis.•Nitric oxide maintains vascular quiescence in part through inhibition of PDI. Protein disulfide isomerase (PDI) plays an essential role in thrombus formation, and PDI inhibition is being evaluated clinically as a novel anticoagulant strategy. However, little is known about the regulation of PDI in the vasculature. Thiols within the catalytic motif of PDI are essential for its role in thrombosis. These same thiols bind nitric oxide (NO), which is a potent regulator of vessel function. To determine whether regulation of PDI represents a mechanism by which NO controls vascular quiescence, we evaluated the effect of NO on PDI function in endothelial cells and platelets, and thrombus formation in vivo. To assess the effect of S‐nitrosylation on the regulation of PDI and other thiol isomerases in the vasculature. The role of endogenous NO in PDI activity was evaluated by incubating endothelium with an NO scavenger, which resulted in exposure of free thiols, increased thiol isomerase activity, and enhanced thrombin generation on the cell membrane. Conversely, exposure of endothelium to NO+ carriers or elevation of endogenous NO levels by induction of NO synthesis resulted in S‐nitrosylation of PDI and decreased surface thiol reductase activity. S‐nitrosylation of platelet PDI inhibited its reductase activity, and S‐nitrosylated PDI interfered with platelet aggregation, α‐granule release, and thrombin generation on platelets. S‐nitrosylated PDI also blocked laser‐induced thrombus formation when infused into mice. S‐nitrosylated ERp5 and ERp57 were found to have similar inhibitory activity. These studies identify NO as a critical regulator of vascular PDI, and show that regulation of PDI function is an important mechanism by which NO maintains vascular quiescence." @default.
- W2892368055 created "2018-09-27" @default.
- W2892368055 creator A5004145705 @default.
- W2892368055 creator A5008060768 @default.
- W2892368055 creator A5017168620 @default.
- W2892368055 creator A5025912230 @default.
- W2892368055 creator A5028221234 @default.
- W2892368055 creator A5036801316 @default.
- W2892368055 creator A5041518236 @default.
- W2892368055 creator A5043112684 @default.
- W2892368055 creator A5046208454 @default.
- W2892368055 creator A5051091978 @default.
- W2892368055 creator A5057286617 @default.
- W2892368055 creator A5061771611 @default.
- W2892368055 creator A5064192763 @default.
- W2892368055 creator A5067850458 @default.
- W2892368055 creator A5078347615 @default.
- W2892368055 creator A5090844944 @default.
- W2892368055 date "2018-11-01" @default.
- W2892368055 modified "2023-10-18" @default.
- W2892368055 title "Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation" @default.
- W2892368055 cites W1494011542 @default.
- W2892368055 cites W1569603295 @default.
- W2892368055 cites W1595540776 @default.
- W2892368055 cites W1691907748 @default.
- W2892368055 cites W1788234057 @default.
- W2892368055 cites W1896366405 @default.
- W2892368055 cites W1964864651 @default.
- W2892368055 cites W1973320894 @default.
- W2892368055 cites W1979158821 @default.
- W2892368055 cites W1980647638 @default.
- W2892368055 cites W1985616824 @default.
- W2892368055 cites W1988287554 @default.
- W2892368055 cites W1989623429 @default.
- W2892368055 cites W1991868168 @default.
- W2892368055 cites W1993876306 @default.
- W2892368055 cites W1994102351 @default.
- W2892368055 cites W1999364304 @default.
- W2892368055 cites W1999457634 @default.
- W2892368055 cites W2003719440 @default.
- W2892368055 cites W2004475073 @default.
- W2892368055 cites W2008372909 @default.
- W2892368055 cites W2012993505 @default.
- W2892368055 cites W2014164476 @default.
- W2892368055 cites W2019323469 @default.
- W2892368055 cites W2020371756 @default.
- W2892368055 cites W2021761574 @default.
- W2892368055 cites W2023122926 @default.
- W2892368055 cites W2025204457 @default.
- W2892368055 cites W2030495727 @default.
- W2892368055 cites W2035400134 @default.
- W2892368055 cites W2038987447 @default.
- W2892368055 cites W2040068879 @default.
- W2892368055 cites W2045138089 @default.
- W2892368055 cites W2047609920 @default.
- W2892368055 cites W2048008460 @default.
- W2892368055 cites W2077563196 @default.
- W2892368055 cites W2078767770 @default.
- W2892368055 cites W2085665405 @default.
- W2892368055 cites W2088234703 @default.
- W2892368055 cites W2092338483 @default.
- W2892368055 cites W2094967295 @default.
- W2892368055 cites W2100357323 @default.
- W2892368055 cites W2103322140 @default.
- W2892368055 cites W2113101438 @default.
- W2892368055 cites W2119129191 @default.
- W2892368055 cites W2121751288 @default.
- W2892368055 cites W2128054798 @default.
- W2892368055 cites W2136057525 @default.
- W2892368055 cites W2140807512 @default.
- W2892368055 cites W2141099666 @default.
- W2892368055 cites W2145028149 @default.
- W2892368055 cites W2158356837 @default.
- W2892368055 cites W2158375208 @default.
- W2892368055 cites W2158923297 @default.
- W2892368055 cites W2159695179 @default.
- W2892368055 cites W2164116069 @default.
- W2892368055 cites W2169675587 @default.
- W2892368055 cites W2170740807 @default.
- W2892368055 cites W2208823439 @default.
- W2892368055 cites W2284087683 @default.
- W2892368055 cites W2319824559 @default.
- W2892368055 cites W2341033880 @default.
- W2892368055 cites W2342340311 @default.
- W2892368055 cites W2514141298 @default.
- W2892368055 cites W2572468017 @default.
- W2892368055 cites W2577610089 @default.
- W2892368055 cites W2590431423 @default.
- W2892368055 cites W2591535522 @default.
- W2892368055 cites W2611730648 @default.
- W2892368055 cites W2784864514 @default.
- W2892368055 cites W2799908580 @default.
- W2892368055 cites W4211210816 @default.
- W2892368055 doi "https://doi.org/10.1111/jth.14291" @default.
- W2892368055 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6374154" @default.
- W2892368055 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30207066" @default.
- W2892368055 hasPublicationYear "2018" @default.
- W2892368055 type Work @default.