Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892369416> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2892369416 endingPage "25" @default.
- W2892369416 startingPage "18" @default.
- W2892369416 abstract "Perivascular spaces (PVS) in the human brain are related to various brain diseases or functions, but it is difficult to quantify them in a magnetic resonance (MR) image due to their thin and blurry appearance. In this paper, we introduce a deep learning based method which can enhance a MR image to better visualize the PVS. To accurately predict the enhanced image, we propose a very deep 3D convolutional neural network which contains densely connected networks with skip connections. The densely connected networks can utilize rich contextual information derived from low level to high level features and effectively alleviate the gradient vanishing problem caused by the deep layers. The proposed method is evaluated on seventeen 7T MR images by a two-fold cross validation. The experiments show that our proposed network is more effective to enhance the PVS than the previous deep learning based methods using less layers." @default.
- W2892369416 created "2018-09-27" @default.
- W2892369416 creator A5000937401 @default.
- W2892369416 creator A5006302877 @default.
- W2892369416 creator A5045525623 @default.
- W2892369416 creator A5059535270 @default.
- W2892369416 creator A5076346519 @default.
- W2892369416 date "2018-01-01" @default.
- W2892369416 modified "2023-09-27" @default.
- W2892369416 title "Enhancement of Perivascular Spaces Using a Very Deep 3D Dense Network" @default.
- W2892369416 cites W1677182931 @default.
- W2892369416 cites W1885185971 @default.
- W2892369416 cites W1948176961 @default.
- W2892369416 cites W2071881327 @default.
- W2892369416 cites W2098819343 @default.
- W2892369416 cites W2127919543 @default.
- W2892369416 cites W2136573752 @default.
- W2892369416 cites W2141499686 @default.
- W2892369416 cites W2214802144 @default.
- W2892369416 cites W2321286752 @default.
- W2892369416 cites W2323566945 @default.
- W2892369416 cites W2593831960 @default.
- W2892369416 cites W2709402577 @default.
- W2892369416 cites W2745023142 @default.
- W2892369416 cites W2780544323 @default.
- W2892369416 cites W2963446712 @default.
- W2892369416 cites W3098848838 @default.
- W2892369416 doi "https://doi.org/10.1007/978-3-030-00320-3_3" @default.
- W2892369416 hasPublicationYear "2018" @default.
- W2892369416 type Work @default.
- W2892369416 sameAs 2892369416 @default.
- W2892369416 citedByCount "2" @default.
- W2892369416 countsByYear W28923694162019 @default.
- W2892369416 crossrefType "book-chapter" @default.
- W2892369416 hasAuthorship W2892369416A5000937401 @default.
- W2892369416 hasAuthorship W2892369416A5006302877 @default.
- W2892369416 hasAuthorship W2892369416A5045525623 @default.
- W2892369416 hasAuthorship W2892369416A5059535270 @default.
- W2892369416 hasAuthorship W2892369416A5076346519 @default.
- W2892369416 hasConcept C105702510 @default.
- W2892369416 hasConcept C108583219 @default.
- W2892369416 hasConcept C115961682 @default.
- W2892369416 hasConcept C153180895 @default.
- W2892369416 hasConcept C154945302 @default.
- W2892369416 hasConcept C2777799939 @default.
- W2892369416 hasConcept C2984842247 @default.
- W2892369416 hasConcept C31972630 @default.
- W2892369416 hasConcept C41008148 @default.
- W2892369416 hasConcept C50644808 @default.
- W2892369416 hasConcept C71924100 @default.
- W2892369416 hasConcept C81363708 @default.
- W2892369416 hasConceptScore W2892369416C105702510 @default.
- W2892369416 hasConceptScore W2892369416C108583219 @default.
- W2892369416 hasConceptScore W2892369416C115961682 @default.
- W2892369416 hasConceptScore W2892369416C153180895 @default.
- W2892369416 hasConceptScore W2892369416C154945302 @default.
- W2892369416 hasConceptScore W2892369416C2777799939 @default.
- W2892369416 hasConceptScore W2892369416C2984842247 @default.
- W2892369416 hasConceptScore W2892369416C31972630 @default.
- W2892369416 hasConceptScore W2892369416C41008148 @default.
- W2892369416 hasConceptScore W2892369416C50644808 @default.
- W2892369416 hasConceptScore W2892369416C71924100 @default.
- W2892369416 hasConceptScore W2892369416C81363708 @default.
- W2892369416 hasLocation W28923694161 @default.
- W2892369416 hasOpenAccess W2892369416 @default.
- W2892369416 hasPrimaryLocation W28923694161 @default.
- W2892369416 hasRelatedWork W2279398222 @default.
- W2892369416 hasRelatedWork W2731899572 @default.
- W2892369416 hasRelatedWork W2915754718 @default.
- W2892369416 hasRelatedWork W2955560448 @default.
- W2892369416 hasRelatedWork W3000866861 @default.
- W2892369416 hasRelatedWork W3133861977 @default.
- W2892369416 hasRelatedWork W4200173597 @default.
- W2892369416 hasRelatedWork W4299822940 @default.
- W2892369416 hasRelatedWork W4312417841 @default.
- W2892369416 hasRelatedWork W4321369474 @default.
- W2892369416 isParatext "false" @default.
- W2892369416 isRetracted "false" @default.
- W2892369416 magId "2892369416" @default.
- W2892369416 workType "book-chapter" @default.