Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892369994> ?p ?o ?g. }
- W2892369994 abstract "A self-learning optimal control algorithm for sequential manufacturing processes with time-discrete control actions is proposed and evaluated with simulated deep drawing processes. The necessary control model is built during consecutive process executions under optimal control via Reinforcement Learning, using the measured product quality as reward after each process execution. Prior model formation, which is required by state-of-the-art algorithms like Model Predictive Control and Approximate Dynamic Programming, is therefore obsolete. This avoids the difficulties in system identification and accurate modelling, which arise with processes subject to non-linear dynamics and stochastic influences. Also runtime complexity problems of these approaches are avoided, which arise when more complex models and larger control prediction horizons are employed. Instead of using pre-created process- and observation-models, Reinforcement Learning algorithms build functions of expected future reward during processing, which are then used for optimal process control decisions. The learning of such expectation functions is realized online by interacting with the process. The proposed algorithm also takes stochastic variations of the process conditions into consideration and is able to cope with partial observability. A method for the adaptive optimal control of partially observable fixed-horizon manufacturing processes, based on Q-learning is developed and studied. The resulting algorithm is instantiated and then evaluated by application to a time-stochastic optimal control problem in metal sheet deep drawing, where the experiments use FEM-simulated processes. The Reinforcement Learning based control shows superior results over the model-based Model Predictive Control and Approximate Dynamic Programming approaches." @default.
- W2892369994 created "2018-09-27" @default.
- W2892369994 creator A5005302320 @default.
- W2892369994 creator A5006765192 @default.
- W2892369994 creator A5061354611 @default.
- W2892369994 date "2018-09-18" @default.
- W2892369994 modified "2023-09-27" @default.
- W2892369994 title "Model-Free Adaptive Optimal Control of Sequential Manufacturing Processes using Reinforcement Learning." @default.
- W2892369994 cites W124292005 @default.
- W2892369994 cites W1499371387 @default.
- W2892369994 cites W1601081659 @default.
- W2892369994 cites W1631623342 @default.
- W2892369994 cites W166862392 @default.
- W2892369994 cites W1949804828 @default.
- W2892369994 cites W1990005421 @default.
- W2892369994 cites W1991624710 @default.
- W2892369994 cites W2025139360 @default.
- W2892369994 cites W2027137968 @default.
- W2892369994 cites W2050838777 @default.
- W2892369994 cites W2051434435 @default.
- W2892369994 cites W2054433572 @default.
- W2892369994 cites W2060277733 @default.
- W2892369994 cites W2072567237 @default.
- W2892369994 cites W2081225213 @default.
- W2892369994 cites W2086198846 @default.
- W2892369994 cites W2087884651 @default.
- W2892369994 cites W2121863487 @default.
- W2892369994 cites W2125702357 @default.
- W2892369994 cites W2134673975 @default.
- W2892369994 cites W2134955780 @default.
- W2892369994 cites W2145339207 @default.
- W2892369994 cites W2183734329 @default.
- W2892369994 cites W2341171179 @default.
- W2892369994 cites W2345277661 @default.
- W2892369994 cites W2738109916 @default.
- W2892369994 cites W2765650568 @default.
- W2892369994 cites W2777433848 @default.
- W2892369994 cites W2781585732 @default.
- W2892369994 cites W2909518001 @default.
- W2892369994 cites W3011120880 @default.
- W2892369994 cites W3102923851 @default.
- W2892369994 hasPublicationYear "2018" @default.
- W2892369994 type Work @default.
- W2892369994 sameAs 2892369994 @default.
- W2892369994 citedByCount "1" @default.
- W2892369994 countsByYear W28923699942019 @default.
- W2892369994 crossrefType "posted-content" @default.
- W2892369994 hasAuthorship W2892369994A5005302320 @default.
- W2892369994 hasAuthorship W2892369994A5006765192 @default.
- W2892369994 hasAuthorship W2892369994A5061354611 @default.
- W2892369994 hasConcept C105795698 @default.
- W2892369994 hasConcept C106189395 @default.
- W2892369994 hasConcept C107464732 @default.
- W2892369994 hasConcept C111919701 @default.
- W2892369994 hasConcept C11413529 @default.
- W2892369994 hasConcept C126255220 @default.
- W2892369994 hasConcept C154945302 @default.
- W2892369994 hasConcept C159886148 @default.
- W2892369994 hasConcept C170131372 @default.
- W2892369994 hasConcept C172205157 @default.
- W2892369994 hasConcept C196340769 @default.
- W2892369994 hasConcept C2775924081 @default.
- W2892369994 hasConcept C28826006 @default.
- W2892369994 hasConcept C33923547 @default.
- W2892369994 hasConcept C36299963 @default.
- W2892369994 hasConcept C37404715 @default.
- W2892369994 hasConcept C41008148 @default.
- W2892369994 hasConcept C91575142 @default.
- W2892369994 hasConcept C97541855 @default.
- W2892369994 hasConcept C98045186 @default.
- W2892369994 hasConceptScore W2892369994C105795698 @default.
- W2892369994 hasConceptScore W2892369994C106189395 @default.
- W2892369994 hasConceptScore W2892369994C107464732 @default.
- W2892369994 hasConceptScore W2892369994C111919701 @default.
- W2892369994 hasConceptScore W2892369994C11413529 @default.
- W2892369994 hasConceptScore W2892369994C126255220 @default.
- W2892369994 hasConceptScore W2892369994C154945302 @default.
- W2892369994 hasConceptScore W2892369994C159886148 @default.
- W2892369994 hasConceptScore W2892369994C170131372 @default.
- W2892369994 hasConceptScore W2892369994C172205157 @default.
- W2892369994 hasConceptScore W2892369994C196340769 @default.
- W2892369994 hasConceptScore W2892369994C2775924081 @default.
- W2892369994 hasConceptScore W2892369994C28826006 @default.
- W2892369994 hasConceptScore W2892369994C33923547 @default.
- W2892369994 hasConceptScore W2892369994C36299963 @default.
- W2892369994 hasConceptScore W2892369994C37404715 @default.
- W2892369994 hasConceptScore W2892369994C41008148 @default.
- W2892369994 hasConceptScore W2892369994C91575142 @default.
- W2892369994 hasConceptScore W2892369994C97541855 @default.
- W2892369994 hasConceptScore W2892369994C98045186 @default.
- W2892369994 hasLocation W28923699941 @default.
- W2892369994 hasOpenAccess W2892369994 @default.
- W2892369994 hasPrimaryLocation W28923699941 @default.
- W2892369994 hasRelatedWork W2031067035 @default.
- W2892369994 hasRelatedWork W2105442158 @default.
- W2892369994 hasRelatedWork W2111723719 @default.
- W2892369994 hasRelatedWork W2139769245 @default.
- W2892369994 hasRelatedWork W2332101710 @default.
- W2892369994 hasRelatedWork W2397557326 @default.
- W2892369994 hasRelatedWork W2909661184 @default.