Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892370834> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2892370834 endingPage "274" @default.
- W2892370834 startingPage "260" @default.
- W2892370834 abstract "Abstract Assessing vertical clearance at bridges is a preliminary step in most routine bridge inspections. This information is critical when assessing the structural integrity of bridges. Furthermore, clearance information at bridges and other overhead assets on a highway network is also extremely important when routing oversized vehicles on a highway network. Efficient clearance assessment makes critical information readily available to asset owners. As a result, asset owners and transportation agencies are able to address concerns in a timely manner, which would help them avoid prohibitive maintenance costs sustained in case of collisions. Unfortunately, manual clearance assessment using conventional surveying tools is unsafe, time consuming, labour intensive. To overcome these challenges, this paper proposes a novel algorithm whereby mobile LiDAR data could be used to efficiently assess clearance at overhead objects on highways. The proposed algorithm first detects and classifies all overhead objects on a highway segment. The clearance is then assessed at each of those objects and minimum clearance is identified. Detection involves voxel-based segmentation of the point cloud followed by a nearest-neighbour search to locate overhead structures. After detecting the structures and identifying their locations, points representing the same object are clustered and classify into bridges and non-bridges. Furthermore, an estimate of the clearance at each object is also obtained. For objects of long span such as bridges, detailed clearance assessment is performed. The developed algorithm was tested on three highway segments in Alberta, Canada including a 242 km highway corridor. Testing revealed that the method was successful in detecting and classifying all overhead structures at an accuracy level of 97.8% and 96.2%, respectively. The algorithm was also successful in accurately measuring the clearance at those structures with the differences in measurement between ground truth data and the extracted results ranging between 0.03 and 0.47%." @default.
- W2892370834 created "2018-09-27" @default.
- W2892370834 creator A5061345152 @default.
- W2892370834 creator A5077960434 @default.
- W2892370834 creator A5083618060 @default.
- W2892370834 creator A5089891276 @default.
- W2892370834 date "2018-11-01" @default.
- W2892370834 modified "2023-09-29" @default.
- W2892370834 title "Automated assessment of vertical clearance on highways scanned using mobile LiDAR technology" @default.
- W2892370834 cites W1100793965 @default.
- W2892370834 cites W1506179068 @default.
- W2892370834 cites W1963736392 @default.
- W2892370834 cites W1971591296 @default.
- W2892370834 cites W1983780870 @default.
- W2892370834 cites W1998834014 @default.
- W2892370834 cites W2018971634 @default.
- W2892370834 cites W2023628067 @default.
- W2892370834 cites W2045388733 @default.
- W2892370834 cites W2052909218 @default.
- W2892370834 cites W2066998173 @default.
- W2892370834 cites W2077506631 @default.
- W2892370834 cites W2097339925 @default.
- W2892370834 cites W2121043976 @default.
- W2892370834 cites W2136651098 @default.
- W2892370834 cites W2206382276 @default.
- W2892370834 cites W2246170918 @default.
- W2892370834 cites W2283413936 @default.
- W2892370834 cites W2297870558 @default.
- W2892370834 cites W2468088575 @default.
- W2892370834 cites W2471837237 @default.
- W2892370834 cites W2800529178 @default.
- W2892370834 cites W2800716596 @default.
- W2892370834 doi "https://doi.org/10.1016/j.autcon.2018.08.015" @default.
- W2892370834 hasPublicationYear "2018" @default.
- W2892370834 type Work @default.
- W2892370834 sameAs 2892370834 @default.
- W2892370834 citedByCount "21" @default.
- W2892370834 countsByYear W28923708342019 @default.
- W2892370834 countsByYear W28923708342020 @default.
- W2892370834 countsByYear W28923708342021 @default.
- W2892370834 countsByYear W28923708342022 @default.
- W2892370834 countsByYear W28923708342023 @default.
- W2892370834 crossrefType "journal-article" @default.
- W2892370834 hasAuthorship W2892370834A5061345152 @default.
- W2892370834 hasAuthorship W2892370834A5077960434 @default.
- W2892370834 hasAuthorship W2892370834A5083618060 @default.
- W2892370834 hasAuthorship W2892370834A5089891276 @default.
- W2892370834 hasConcept C127413603 @default.
- W2892370834 hasConcept C205649164 @default.
- W2892370834 hasConcept C22212356 @default.
- W2892370834 hasConcept C39432304 @default.
- W2892370834 hasConcept C41008148 @default.
- W2892370834 hasConcept C51399673 @default.
- W2892370834 hasConcept C62649853 @default.
- W2892370834 hasConceptScore W2892370834C127413603 @default.
- W2892370834 hasConceptScore W2892370834C205649164 @default.
- W2892370834 hasConceptScore W2892370834C22212356 @default.
- W2892370834 hasConceptScore W2892370834C39432304 @default.
- W2892370834 hasConceptScore W2892370834C41008148 @default.
- W2892370834 hasConceptScore W2892370834C51399673 @default.
- W2892370834 hasConceptScore W2892370834C62649853 @default.
- W2892370834 hasFunder F4320325651 @default.
- W2892370834 hasLocation W28923708341 @default.
- W2892370834 hasOpenAccess W2892370834 @default.
- W2892370834 hasPrimaryLocation W28923708341 @default.
- W2892370834 hasRelatedWork W1964041166 @default.
- W2892370834 hasRelatedWork W196913356 @default.
- W2892370834 hasRelatedWork W1994648051 @default.
- W2892370834 hasRelatedWork W2094658701 @default.
- W2892370834 hasRelatedWork W2121524756 @default.
- W2892370834 hasRelatedWork W2140032575 @default.
- W2892370834 hasRelatedWork W2351984678 @default.
- W2892370834 hasRelatedWork W2487834875 @default.
- W2892370834 hasRelatedWork W2899084033 @default.
- W2892370834 hasRelatedWork W3011451421 @default.
- W2892370834 hasVolume "95" @default.
- W2892370834 isParatext "false" @default.
- W2892370834 isRetracted "false" @default.
- W2892370834 magId "2892370834" @default.
- W2892370834 workType "article" @default.