Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892371073> ?p ?o ?g. }
- W2892371073 endingPage "2812" @default.
- W2892371073 startingPage "2794" @default.
- W2892371073 abstract "The purpose of this paper is to analyze the modern deep neural networks such as nonlinear autoregressive network with external inputs and a recurrent neural network called long short-term memory for wind speed forecast for long-term and use the prediction for fatigue analysis of a large 5 MW wind turbine blade made of composite materials. The use of machine learning algorithms of advanced neural network applied for engineering problems is increasing recently. The present paper therefore brings as important connection between these latest machine learning methods and engineering analysis of complex wind turbine blades which are also the focus of researchers in renewable system design and analysis. First, a nonlinear autoregressive network with external inputs neural network model using Levenberg–Marquardt back propagation feed forward algorithm is developed with 5 years of environment parameters as input. Similarly, a long short-term memory based model is developed and compared. The chosen long short-term memory model is used for developing two-year wind speed forecast. This wind pattern is used to create time varying loads on blade sections and cross-verified with National Renewable Energy Laboratory tools. A high-fidelity CAD model of the NREL 5 MW blade is developed and the fatigue analysis of the blade is carried out using the stress life approach with load ratio based on cohesive zone modeling. The blade is found to have available life of about 23.6 years. Thus, an integrated methodology is developed involving high-fidelity modeling of the composite material blade, wind speed forecasting using multiple environmental parameters using latest deep learning methods for machine learning, dynamic wind load calculation, and fatigue analysis for National Renewable Energy Laboratory blade." @default.
- W2892371073 created "2018-09-27" @default.
- W2892371073 creator A5008484377 @default.
- W2892371073 creator A5041471061 @default.
- W2892371073 creator A5056810965 @default.
- W2892371073 date "2018-09-07" @default.
- W2892371073 modified "2023-10-14" @default.
- W2892371073 title "Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade" @default.
- W2892371073 cites W12043821 @default.
- W2892371073 cites W15124523 @default.
- W2892371073 cites W1533975523 @default.
- W2892371073 cites W1866429230 @default.
- W2892371073 cites W1870322149 @default.
- W2892371073 cites W1903581827 @default.
- W2892371073 cites W1967259677 @default.
- W2892371073 cites W1971840451 @default.
- W2892371073 cites W1980383261 @default.
- W2892371073 cites W1989717558 @default.
- W2892371073 cites W1992827946 @default.
- W2892371073 cites W1996423914 @default.
- W2892371073 cites W2006493581 @default.
- W2892371073 cites W2036681246 @default.
- W2892371073 cites W2037944696 @default.
- W2892371073 cites W2041722313 @default.
- W2892371073 cites W2048217608 @default.
- W2892371073 cites W2053616866 @default.
- W2892371073 cites W2058504886 @default.
- W2892371073 cites W2064428837 @default.
- W2892371073 cites W2064675550 @default.
- W2892371073 cites W2072684007 @default.
- W2892371073 cites W2083437125 @default.
- W2892371073 cites W2084991250 @default.
- W2892371073 cites W2092129023 @default.
- W2892371073 cites W2099572698 @default.
- W2892371073 cites W2102872362 @default.
- W2892371073 cites W2103452139 @default.
- W2892371073 cites W2111395484 @default.
- W2892371073 cites W2134080538 @default.
- W2892371073 cites W2145032130 @default.
- W2892371073 cites W2145897474 @default.
- W2892371073 cites W2232217012 @default.
- W2892371073 cites W2321419215 @default.
- W2892371073 cites W2326154202 @default.
- W2892371073 cites W2508763158 @default.
- W2892371073 cites W2509684588 @default.
- W2892371073 cites W2534324427 @default.
- W2892371073 cites W2560099312 @default.
- W2892371073 cites W2566003805 @default.
- W2892371073 cites W2574428754 @default.
- W2892371073 cites W2584344547 @default.
- W2892371073 cites W2584540583 @default.
- W2892371073 cites W2588363884 @default.
- W2892371073 cites W2731024278 @default.
- W2892371073 cites W2751183336 @default.
- W2892371073 cites W2756188111 @default.
- W2892371073 cites W2766741926 @default.
- W2892371073 cites W4229664963 @default.
- W2892371073 cites W42571253 @default.
- W2892371073 cites W985734038 @default.
- W2892371073 doi "https://doi.org/10.1177/0954406218797972" @default.
- W2892371073 hasPublicationYear "2018" @default.
- W2892371073 type Work @default.
- W2892371073 sameAs 2892371073 @default.
- W2892371073 citedByCount "16" @default.
- W2892371073 countsByYear W28923710732019 @default.
- W2892371073 countsByYear W28923710732020 @default.
- W2892371073 countsByYear W28923710732021 @default.
- W2892371073 countsByYear W28923710732022 @default.
- W2892371073 countsByYear W28923710732023 @default.
- W2892371073 crossrefType "journal-article" @default.
- W2892371073 hasAuthorship W2892371073A5008484377 @default.
- W2892371073 hasAuthorship W2892371073A5041471061 @default.
- W2892371073 hasAuthorship W2892371073A5056810965 @default.
- W2892371073 hasConcept C119599485 @default.
- W2892371073 hasConcept C121332964 @default.
- W2892371073 hasConcept C127413603 @default.
- W2892371073 hasConcept C149782125 @default.
- W2892371073 hasConcept C153294291 @default.
- W2892371073 hasConcept C154945302 @default.
- W2892371073 hasConcept C159877910 @default.
- W2892371073 hasConcept C161067210 @default.
- W2892371073 hasConcept C162324750 @default.
- W2892371073 hasConcept C188573790 @default.
- W2892371073 hasConcept C20381859 @default.
- W2892371073 hasConcept C2778449969 @default.
- W2892371073 hasConcept C41008148 @default.
- W2892371073 hasConcept C44154836 @default.
- W2892371073 hasConcept C50644808 @default.
- W2892371073 hasConcept C66938386 @default.
- W2892371073 hasConcept C78519656 @default.
- W2892371073 hasConcept C78600449 @default.
- W2892371073 hasConceptScore W2892371073C119599485 @default.
- W2892371073 hasConceptScore W2892371073C121332964 @default.
- W2892371073 hasConceptScore W2892371073C127413603 @default.
- W2892371073 hasConceptScore W2892371073C149782125 @default.
- W2892371073 hasConceptScore W2892371073C153294291 @default.
- W2892371073 hasConceptScore W2892371073C154945302 @default.
- W2892371073 hasConceptScore W2892371073C159877910 @default.