Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892374186> ?p ?o ?g. }
- W2892374186 endingPage "2699" @default.
- W2892374186 startingPage "2691" @default.
- W2892374186 abstract "Human activity recognition plays a unique role in many important applications, including ubiquitous computing, health-care services, and smart buildings. Due to the nonintrusive property of smartphones, smartphone sensors are widely used for the identification of human activities. Since the signals of smartphone sensors are quite noisy, feature engineering will be performed to extract more discriminant representations. Then, various machine learning algorithms can be employed to recognize different human activities. Extreme learning machine (ELM) has been shown to be effective in classification tasks with extremely fast learning speed. Due to its randomness property, it is naturally suitable for ensemble learning. In this paper, we propose a novel ensemble ELM algorithm for human activity recognition using smartphone sensors. Gaussian random projection is employed to initialize the input weights of base ELMs. By doing this, more diversities can be generated to boost the performance of ensemble learning. Real experimental data has been applied to evaluate the performance of our proposed approach. We also conduct a comparison of the proposed approach with some state-of-the-art approaches in the literature. The experimental results indicate that our proposed ensemble ELM approach outperforms these approaches and can achieve recognition accuracies of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$text{97.35}%$</tex-math></inline-formula> and <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$text{98.88}%$</tex-math></inline-formula> on two datasets." @default.
- W2892374186 created "2018-09-27" @default.
- W2892374186 creator A5029817092 @default.
- W2892374186 creator A5075033951 @default.
- W2892374186 creator A5080343454 @default.
- W2892374186 date "2019-05-01" @default.
- W2892374186 modified "2023-10-10" @default.
- W2892374186 title "A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors" @default.
- W2892374186 cites W1530780135 @default.
- W2892374186 cites W1534477342 @default.
- W2892374186 cites W1605688901 @default.
- W2892374186 cites W1851567383 @default.
- W2892374186 cites W1968670561 @default.
- W2892374186 cites W1994527079 @default.
- W2892374186 cites W2020881829 @default.
- W2892374186 cites W2026131661 @default.
- W2892374186 cites W2039493784 @default.
- W2892374186 cites W2040901622 @default.
- W2892374186 cites W2044402175 @default.
- W2892374186 cites W2062950526 @default.
- W2892374186 cites W2064327970 @default.
- W2892374186 cites W2080104945 @default.
- W2892374186 cites W2089412209 @default.
- W2892374186 cites W2104028415 @default.
- W2892374186 cites W2111072639 @default.
- W2892374186 cites W2134663338 @default.
- W2892374186 cites W2244486986 @default.
- W2892374186 cites W2250875882 @default.
- W2892374186 cites W2270470215 @default.
- W2892374186 cites W2316564986 @default.
- W2892374186 cites W2342792048 @default.
- W2892374186 cites W2344637340 @default.
- W2892374186 cites W2465887865 @default.
- W2892374186 cites W2504658994 @default.
- W2892374186 cites W2508096415 @default.
- W2892374186 cites W2526868004 @default.
- W2892374186 cites W2538532460 @default.
- W2892374186 cites W2623595444 @default.
- W2892374186 cites W2911964244 @default.
- W2892374186 cites W2963287487 @default.
- W2892374186 cites W4239510810 @default.
- W2892374186 doi "https://doi.org/10.1109/tii.2018.2869843" @default.
- W2892374186 hasPublicationYear "2019" @default.
- W2892374186 type Work @default.
- W2892374186 sameAs 2892374186 @default.
- W2892374186 citedByCount "97" @default.
- W2892374186 countsByYear W28923741862019 @default.
- W2892374186 countsByYear W28923741862020 @default.
- W2892374186 countsByYear W28923741862021 @default.
- W2892374186 countsByYear W28923741862022 @default.
- W2892374186 countsByYear W28923741862023 @default.
- W2892374186 crossrefType "journal-article" @default.
- W2892374186 hasAuthorship W2892374186A5029817092 @default.
- W2892374186 hasAuthorship W2892374186A5075033951 @default.
- W2892374186 hasAuthorship W2892374186A5080343454 @default.
- W2892374186 hasConcept C11413529 @default.
- W2892374186 hasConcept C119857082 @default.
- W2892374186 hasConcept C153180895 @default.
- W2892374186 hasConcept C154945302 @default.
- W2892374186 hasConcept C169258074 @default.
- W2892374186 hasConcept C2780150128 @default.
- W2892374186 hasConcept C33923547 @default.
- W2892374186 hasConcept C41008148 @default.
- W2892374186 hasConcept C45357846 @default.
- W2892374186 hasConcept C45942800 @default.
- W2892374186 hasConcept C50644808 @default.
- W2892374186 hasConcept C57493831 @default.
- W2892374186 hasConcept C78397625 @default.
- W2892374186 hasConcept C94375191 @default.
- W2892374186 hasConceptScore W2892374186C11413529 @default.
- W2892374186 hasConceptScore W2892374186C119857082 @default.
- W2892374186 hasConceptScore W2892374186C153180895 @default.
- W2892374186 hasConceptScore W2892374186C154945302 @default.
- W2892374186 hasConceptScore W2892374186C169258074 @default.
- W2892374186 hasConceptScore W2892374186C2780150128 @default.
- W2892374186 hasConceptScore W2892374186C33923547 @default.
- W2892374186 hasConceptScore W2892374186C41008148 @default.
- W2892374186 hasConceptScore W2892374186C45357846 @default.
- W2892374186 hasConceptScore W2892374186C45942800 @default.
- W2892374186 hasConceptScore W2892374186C50644808 @default.
- W2892374186 hasConceptScore W2892374186C57493831 @default.
- W2892374186 hasConceptScore W2892374186C78397625 @default.
- W2892374186 hasConceptScore W2892374186C94375191 @default.
- W2892374186 hasFunder F4320333169 @default.
- W2892374186 hasIssue "5" @default.
- W2892374186 hasLocation W28923741861 @default.
- W2892374186 hasOpenAccess W2892374186 @default.
- W2892374186 hasPrimaryLocation W28923741861 @default.
- W2892374186 hasRelatedWork W2067443264 @default.
- W2892374186 hasRelatedWork W2188759683 @default.
- W2892374186 hasRelatedWork W2944292463 @default.
- W2892374186 hasRelatedWork W2953079191 @default.
- W2892374186 hasRelatedWork W3009797526 @default.
- W2892374186 hasRelatedWork W3014252901 @default.
- W2892374186 hasRelatedWork W31566076 @default.
- W2892374186 hasRelatedWork W3208169454 @default.
- W2892374186 hasRelatedWork W4317376680 @default.
- W2892374186 hasRelatedWork W4360777922 @default.