Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892374370> ?p ?o ?g. }
- W2892374370 endingPage "290" @default.
- W2892374370 startingPage "264" @default.
- W2892374370 abstract "In this paper, we first extend the micro–macro decomposition method for multiscale kinetic equations from the BGK model to general collisional kinetic equations, including the Boltzmann and the Fokker–Planck Landau equations. The main idea is to use a relation between the (numerically stiff) linearized collision operator with the nonlinear quadratic ones, the latter's stiffness can be overcome using the BGK penalization method of Filbet and Jin for the Boltzmann, or the linear Fokker–Planck penalization method of Jin and Yan for the Fokker–Planck Landau equations. Such a scheme allows the computation of multiscale collisional kinetic equations efficiently in all regimes, including the fluid regime in which the fluid dynamic behavior can be correctly computed even without resolving the small Knudsen number. A distinguished feature of these schemes is that although they contain implicit terms, they can be implemented explicitly. These schemes preserve the moments (mass, momentum and energy) exactly thanks to the use of the macroscopic system which is naturally in a conservative form. We further utilize this conservation property for more general kinetic systems, using the Vlasov–Ampère and Vlasov–Ampère–Boltzmann systems as examples. The main idea is to evolve both the kinetic equation for the probability density distribution and the moment system, the later naturally induces a scheme that conserves exactly the moments numerically if they are physically conserved." @default.
- W2892374370 created "2018-09-27" @default.
- W2892374370 creator A5004075655 @default.
- W2892374370 creator A5017812804 @default.
- W2892374370 creator A5087543049 @default.
- W2892374370 date "2019-04-01" @default.
- W2892374370 modified "2023-10-17" @default.
- W2892374370 title "Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations" @default.
- W2892374370 cites W1967154621 @default.
- W2892374370 cites W1972759058 @default.
- W2892374370 cites W1976190762 @default.
- W2892374370 cites W1978434425 @default.
- W2892374370 cites W1999046691 @default.
- W2892374370 cites W2001032670 @default.
- W2892374370 cites W2001859599 @default.
- W2892374370 cites W2023493249 @default.
- W2892374370 cites W2032827682 @default.
- W2892374370 cites W2034976587 @default.
- W2892374370 cites W2044355577 @default.
- W2892374370 cites W2048456913 @default.
- W2892374370 cites W2051302508 @default.
- W2892374370 cites W2051358691 @default.
- W2892374370 cites W2055048779 @default.
- W2892374370 cites W2066934546 @default.
- W2892374370 cites W2077579190 @default.
- W2892374370 cites W2080330641 @default.
- W2892374370 cites W2080735958 @default.
- W2892374370 cites W2086318762 @default.
- W2892374370 cites W2134117747 @default.
- W2892374370 cites W2138999017 @default.
- W2892374370 cites W2162483424 @default.
- W2892374370 cites W2166039818 @default.
- W2892374370 cites W2171215286 @default.
- W2892374370 cites W2216972094 @default.
- W2892374370 cites W2407646374 @default.
- W2892374370 cites W2963446664 @default.
- W2892374370 cites W3101662299 @default.
- W2892374370 cites W4251706365 @default.
- W2892374370 doi "https://doi.org/10.1016/j.jcp.2019.01.018" @default.
- W2892374370 hasPublicationYear "2019" @default.
- W2892374370 type Work @default.
- W2892374370 sameAs 2892374370 @default.
- W2892374370 citedByCount "9" @default.
- W2892374370 countsByYear W28923743702020 @default.
- W2892374370 countsByYear W28923743702021 @default.
- W2892374370 countsByYear W28923743702022 @default.
- W2892374370 crossrefType "journal-article" @default.
- W2892374370 hasAuthorship W2892374370A5004075655 @default.
- W2892374370 hasAuthorship W2892374370A5017812804 @default.
- W2892374370 hasAuthorship W2892374370A5087543049 @default.
- W2892374370 hasBestOaLocation W28923743701 @default.
- W2892374370 hasConcept C121332964 @default.
- W2892374370 hasConcept C121864883 @default.
- W2892374370 hasConcept C134306372 @default.
- W2892374370 hasConcept C135889238 @default.
- W2892374370 hasConcept C158622935 @default.
- W2892374370 hasConcept C165995430 @default.
- W2892374370 hasConcept C179254644 @default.
- W2892374370 hasConcept C21821499 @default.
- W2892374370 hasConcept C28826006 @default.
- W2892374370 hasConcept C33923547 @default.
- W2892374370 hasConcept C3445786 @default.
- W2892374370 hasConcept C62520636 @default.
- W2892374370 hasConcept C69123182 @default.
- W2892374370 hasConcept C73155160 @default.
- W2892374370 hasConcept C74650414 @default.
- W2892374370 hasConcept C93779851 @default.
- W2892374370 hasConceptScore W2892374370C121332964 @default.
- W2892374370 hasConceptScore W2892374370C121864883 @default.
- W2892374370 hasConceptScore W2892374370C134306372 @default.
- W2892374370 hasConceptScore W2892374370C135889238 @default.
- W2892374370 hasConceptScore W2892374370C158622935 @default.
- W2892374370 hasConceptScore W2892374370C165995430 @default.
- W2892374370 hasConceptScore W2892374370C179254644 @default.
- W2892374370 hasConceptScore W2892374370C21821499 @default.
- W2892374370 hasConceptScore W2892374370C28826006 @default.
- W2892374370 hasConceptScore W2892374370C33923547 @default.
- W2892374370 hasConceptScore W2892374370C3445786 @default.
- W2892374370 hasConceptScore W2892374370C62520636 @default.
- W2892374370 hasConceptScore W2892374370C69123182 @default.
- W2892374370 hasConceptScore W2892374370C73155160 @default.
- W2892374370 hasConceptScore W2892374370C74650414 @default.
- W2892374370 hasConceptScore W2892374370C93779851 @default.
- W2892374370 hasFunder F4320306076 @default.
- W2892374370 hasFunder F4320306084 @default.
- W2892374370 hasFunder F4320321001 @default.
- W2892374370 hasLocation W28923743701 @default.
- W2892374370 hasLocation W28923743702 @default.
- W2892374370 hasLocation W28923743703 @default.
- W2892374370 hasOpenAccess W2892374370 @default.
- W2892374370 hasPrimaryLocation W28923743701 @default.
- W2892374370 hasRelatedWork W1532647343 @default.
- W2892374370 hasRelatedWork W1972029542 @default.
- W2892374370 hasRelatedWork W2045760532 @default.
- W2892374370 hasRelatedWork W2085701822 @default.
- W2892374370 hasRelatedWork W2470529576 @default.
- W2892374370 hasRelatedWork W2556447748 @default.
- W2892374370 hasRelatedWork W2564523099 @default.