Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892388093> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2892388093 abstract "Recently, graph convolutional network (GCN) has been widely used for semi-supervised classification and deep feature representation on graph-structured data. However, existing GCN generally fails to consider the local invariance constraint in learning and representation process. That is, if two data points Xi and Xj are close in the intrinsic geometry of the data distribution, then their labels/representations should also be close to each other. This is known as local invariance assumption which plays an essential role in the development of various kinds of traditional algorithms, such as dimensionality reduction and semi-supervised learning, in machine learning area. To overcome this limitation, we introduce a graph Laplacian GCN (gLGCN) approach for graph data representation and semi-supervised classification. The proposed gLGCN model is capable of encoding both graph structure and node features together while maintains the local invariance constraint naturally for robust data representation and semi-supervised classification. Experiments show the benefit of the benefits the proposed gLGCN network." @default.
- W2892388093 created "2018-10-05" @default.
- W2892388093 creator A5053609164 @default.
- W2892388093 creator A5057967490 @default.
- W2892388093 date "2018-09-26" @default.
- W2892388093 modified "2023-09-24" @default.
- W2892388093 title "Graph Laplacian Regularized Graph Convolutional Networks for Semi-supervised Learning." @default.
- W2892388093 cites W2407712691 @default.
- W2892388093 cites W2519887557 @default.
- W2892388093 cites W2805479641 @default.
- W2892388093 cites W2963312446 @default.
- W2892388093 cites W2964321699 @default.
- W2892388093 hasPublicationYear "2018" @default.
- W2892388093 type Work @default.
- W2892388093 sameAs 2892388093 @default.
- W2892388093 citedByCount "3" @default.
- W2892388093 countsByYear W28923880932019 @default.
- W2892388093 countsByYear W28923880932020 @default.
- W2892388093 countsByYear W28923880932021 @default.
- W2892388093 crossrefType "proceedings-article" @default.
- W2892388093 hasAuthorship W2892388093A5053609164 @default.
- W2892388093 hasAuthorship W2892388093A5057967490 @default.
- W2892388093 hasConcept C115178988 @default.
- W2892388093 hasConcept C116409475 @default.
- W2892388093 hasConcept C132525143 @default.
- W2892388093 hasConcept C134306372 @default.
- W2892388093 hasConcept C153180895 @default.
- W2892388093 hasConcept C154945302 @default.
- W2892388093 hasConcept C165700671 @default.
- W2892388093 hasConcept C33923547 @default.
- W2892388093 hasConcept C41008148 @default.
- W2892388093 hasConcept C58973888 @default.
- W2892388093 hasConcept C59404180 @default.
- W2892388093 hasConcept C80444323 @default.
- W2892388093 hasConcept C81363708 @default.
- W2892388093 hasConceptScore W2892388093C115178988 @default.
- W2892388093 hasConceptScore W2892388093C116409475 @default.
- W2892388093 hasConceptScore W2892388093C132525143 @default.
- W2892388093 hasConceptScore W2892388093C134306372 @default.
- W2892388093 hasConceptScore W2892388093C153180895 @default.
- W2892388093 hasConceptScore W2892388093C154945302 @default.
- W2892388093 hasConceptScore W2892388093C165700671 @default.
- W2892388093 hasConceptScore W2892388093C33923547 @default.
- W2892388093 hasConceptScore W2892388093C41008148 @default.
- W2892388093 hasConceptScore W2892388093C58973888 @default.
- W2892388093 hasConceptScore W2892388093C59404180 @default.
- W2892388093 hasConceptScore W2892388093C80444323 @default.
- W2892388093 hasConceptScore W2892388093C81363708 @default.
- W2892388093 hasLocation W28923880931 @default.
- W2892388093 hasOpenAccess W2892388093 @default.
- W2892388093 hasPrimaryLocation W28923880931 @default.
- W2892388093 hasRelatedWork W1859687398 @default.
- W2892388093 hasRelatedWork W2021015582 @default.
- W2892388093 hasRelatedWork W2029223186 @default.
- W2892388093 hasRelatedWork W2037444913 @default.
- W2892388093 hasRelatedWork W2104144964 @default.
- W2892388093 hasRelatedWork W2113666837 @default.
- W2892388093 hasRelatedWork W2403743911 @default.
- W2892388093 hasRelatedWork W2752352959 @default.
- W2892388093 hasRelatedWork W2809531940 @default.
- W2892388093 hasRelatedWork W2944502388 @default.
- W2892388093 hasRelatedWork W2949978127 @default.
- W2892388093 hasRelatedWork W2985061404 @default.
- W2892388093 hasRelatedWork W3013950179 @default.
- W2892388093 hasRelatedWork W3017967922 @default.
- W2892388093 hasRelatedWork W3098523343 @default.
- W2892388093 hasRelatedWork W3102208898 @default.
- W2892388093 hasRelatedWork W3150207534 @default.
- W2892388093 hasRelatedWork W3184981033 @default.
- W2892388093 hasRelatedWork W3185506214 @default.
- W2892388093 hasRelatedWork W3214607848 @default.
- W2892388093 isParatext "false" @default.
- W2892388093 isRetracted "false" @default.
- W2892388093 magId "2892388093" @default.
- W2892388093 workType "article" @default.