Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892391378> ?p ?o ?g. }
- W2892391378 endingPage "193" @default.
- W2892391378 startingPage "182" @default.
- W2892391378 abstract "We investigated extent and direction of Zn isotope fractionation in secondary zinc minerals formed during low temperature hydrothermal and/or supergene oxidation of primary sulfide deposits. Zinc isotope data have been obtained from non-sulfide zinc mineral separates (willemite - Zn2SiO4, smithsonite - ZnCO3, hemimorphite - Zn4(Si2O7)(OH)2·H2O, hydrozincite - Zn5(CO3)2(OH)6, and sauconite - Na0.3Zn3(Si,Al)4O10(OH)2·4H2O) collected from several Zn deposits in Ireland, Belgium, Poland, Namibia, Peru, Yemen and Zambia. The data are compared with Zn isotope compositions measured on Zn sulfides collected in the same areas and/or derived from the existing literature, to establish the controls of direction and likely extent of any fractionations. We find that willemite has the greatest compositional variability, with measured δ66ZnJCM-Lyon values ranging from −0.42 to 1.39‰, spanning the entire range of terrestrial variation in Zn isotopes recorded to date. Overall, significant fractionations in positive and negative directions are recorded relative to the precursor phase (primary sphalerite or an earlier secondary phase), with primary sphalerite falling in a relatively narrow range of isotopic values (approximately −0.1 to +0.4‰). Most of the data observed on willemite, hemimorphite and hydrozincite can be explained with a model of isotopic fractionation, in which partial dissolution of primary sphalerite is followed by precipitation of an initial secondary phase that preferentially incorporates heavy Zn isotopes. Smithsonite, instead, preferentially incorporates light Zn isotopes. This reflects the variation in the Zn-x bond strengths of these secondary phases with respect to the original sulfides. We also observed that isotope compositions do not depend only on the difference between the fractionation factors of the involved phases but also on the amount of the secondary mineral precipitated after dissolution of primary sulfide, and that the greatest fractionations occur when only small amounts of secondary mineral are precipitated. Progressive precipitation from migrating fluids that form phases enriched in heavy zinc isotopes would lead to a gradual decrease in the δ66Zn values of such phases, and the fluids involved, in time and space. Strong negative isotopic shifts are almost only observed for late crystallizing phases, such as those in vugs. These are interpreted to reflect precipitation from residual, isotopically-light fluids that are the inevitable highly-fractionated product of the above-described process. Where a more complete replacement of primary sulfide has occurred, such as in the high-grade core of non-sulfide zinc orebodies, there is limited net isotopic fractionation because dissolved primary zinc is nearly quantitatively reprecipitated locally. In addition, in only one case (Yanque, Peru) we observed that the fringes of non-sulfide zinc deposit were characterized by isotopically fractionated compositions, with highly negative values implying extensive precipitation (earlier, or elsewhere) of isotopically heavy secondary phases. The higher-grade ore zones, where complete breakdown of primary sulfides and quantitative reprecipitation of zinc have occurred, show instead less fractionated compositions." @default.
- W2892391378 created "2018-10-05" @default.
- W2892391378 creator A5017211359 @default.
- W2892391378 creator A5041647725 @default.
- W2892391378 creator A5050261384 @default.
- W2892391378 creator A5079726398 @default.
- W2892391378 creator A5082957340 @default.
- W2892391378 date "2018-11-01" @default.
- W2892391378 modified "2023-10-14" @default.
- W2892391378 title "A global assessment of Zn isotope fractionation in secondary Zn minerals from sulfide and non-sulfide ore deposits and model for fractionation control" @default.
- W2892391378 cites W1649947189 @default.
- W2892391378 cites W1882246603 @default.
- W2892391378 cites W1963845396 @default.
- W2892391378 cites W1964755189 @default.
- W2892391378 cites W1967326699 @default.
- W2892391378 cites W1968907992 @default.
- W2892391378 cites W1970752532 @default.
- W2892391378 cites W1970876363 @default.
- W2892391378 cites W1974997671 @default.
- W2892391378 cites W1977970105 @default.
- W2892391378 cites W1978676052 @default.
- W2892391378 cites W1980866218 @default.
- W2892391378 cites W1992222704 @default.
- W2892391378 cites W1996901074 @default.
- W2892391378 cites W2004770612 @default.
- W2892391378 cites W2011758441 @default.
- W2892391378 cites W2018648623 @default.
- W2892391378 cites W2019499196 @default.
- W2892391378 cites W2020389567 @default.
- W2892391378 cites W2022216240 @default.
- W2892391378 cites W2023227088 @default.
- W2892391378 cites W2025807706 @default.
- W2892391378 cites W2026455415 @default.
- W2892391378 cites W2029755997 @default.
- W2892391378 cites W2031395049 @default.
- W2892391378 cites W2037203303 @default.
- W2892391378 cites W2037553433 @default.
- W2892391378 cites W2042229806 @default.
- W2892391378 cites W2054601548 @default.
- W2892391378 cites W2054889142 @default.
- W2892391378 cites W2057082492 @default.
- W2892391378 cites W2062383693 @default.
- W2892391378 cites W2062564954 @default.
- W2892391378 cites W2062984411 @default.
- W2892391378 cites W2063263639 @default.
- W2892391378 cites W2067992793 @default.
- W2892391378 cites W2068496916 @default.
- W2892391378 cites W2072135099 @default.
- W2892391378 cites W2073803933 @default.
- W2892391378 cites W2084343178 @default.
- W2892391378 cites W2102484660 @default.
- W2892391378 cites W2114134135 @default.
- W2892391378 cites W2117798232 @default.
- W2892391378 cites W2122799567 @default.
- W2892391378 cites W2128840954 @default.
- W2892391378 cites W2153670863 @default.
- W2892391378 cites W2158749397 @default.
- W2892391378 cites W2169591704 @default.
- W2892391378 cites W2170503874 @default.
- W2892391378 cites W2170928059 @default.
- W2892391378 cites W2259962125 @default.
- W2892391378 cites W2334859563 @default.
- W2892391378 cites W2520557910 @default.
- W2892391378 cites W2538142679 @default.
- W2892391378 cites W2560511480 @default.
- W2892391378 cites W2573300670 @default.
- W2892391378 cites W2585007529 @default.
- W2892391378 cites W2621724256 @default.
- W2892391378 cites W2789761850 @default.
- W2892391378 cites W2907764987 @default.
- W2892391378 cites W4241854778 @default.
- W2892391378 doi "https://doi.org/10.1016/j.chemgeo.2018.09.033" @default.
- W2892391378 hasPublicationYear "2018" @default.
- W2892391378 type Work @default.
- W2892391378 sameAs 2892391378 @default.
- W2892391378 citedByCount "29" @default.
- W2892391378 countsByYear W28923913782019 @default.
- W2892391378 countsByYear W28923913782020 @default.
- W2892391378 countsByYear W28923913782021 @default.
- W2892391378 countsByYear W28923913782022 @default.
- W2892391378 countsByYear W28923913782023 @default.
- W2892391378 crossrefType "journal-article" @default.
- W2892391378 hasAuthorship W2892391378A5017211359 @default.
- W2892391378 hasAuthorship W2892391378A5041647725 @default.
- W2892391378 hasAuthorship W2892391378A5050261384 @default.
- W2892391378 hasAuthorship W2892391378A5079726398 @default.
- W2892391378 hasAuthorship W2892391378A5082957340 @default.
- W2892391378 hasBestOaLocation W28923913782 @default.
- W2892391378 hasConcept C102198088 @default.
- W2892391378 hasConcept C121332964 @default.
- W2892391378 hasConcept C127313418 @default.
- W2892391378 hasConcept C164304813 @default.
- W2892391378 hasConcept C17409809 @default.
- W2892391378 hasConcept C178790620 @default.
- W2892391378 hasConcept C185592680 @default.
- W2892391378 hasConcept C199289684 @default.
- W2892391378 hasConcept C200233404 @default.
- W2892391378 hasConcept C2776062231 @default.