Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892417176> ?p ?o ?g. }
- W2892417176 abstract "In shrimp aquaculture, farming systems are carefully managed to avoid rearing failure due to stress, disease or mass mortality, and to achieve optimum shrimp production. However, little is known about how shrimp farming systems affect biogeochemical parameters and bacterial communities in rearing water, whether high stocking densities (intensive system) will increase the abundance of pathogenic bacteria. In this study, we characterized bacterial communities in shrimp ponds with different population densities. Water quality, such as physical parameters, inorganic nutrient concentrations and cultivable heterotrophic bacterial abundances, including potential pathogenic Vibrio, were determined in moderate density/semi-intensive (40 post-larvae m-3) and high density/intensive shrimp ponds (90 post-larvae m-3), over the shrimp cultivation time. Free-living and particle-attached bacterial communities were characterized by amplicon sequencing of the 16S rRNA gene. Suspended particulate matter (SPM), salinity, chlorophyll a, pH and dissolved oxygen differed significantly between semi-intensive and intensive systems. These variations contrasted with the equal abundance of cultivable heterotrophic bacteria and inorganic nutrient concentrations. Bacterial communities were dominated by Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, Bacilli, and Actinobacteria. Halomonas and Psychrobacter were the most dominant genera in the particle-attached fractions, while Salegentibacter, Sulfitobacter, and Halomonas were found in the free-living fractions of both systems. Redundancy analysis indicated that among the observed environmental parameters, salinity was best suited to explain patterns in the composition of both free-living and particle-attached bacterial communities (R²: 15.32% and 12.81%, respectively), although a large fraction remained unexplained. Based on 16S rRNA gene sequences, aggregated particles from intensive ponds loaded a higher proportion of Vibrio than particles from semi-intensive ponds. In individual ponds, sequence proportions of Vibrio and Halomonas displayed an inverse relationship that coincided with changes in pH. Our observations suggest that high pH-values may suppress Vibrio populations and eventually pathogenic Vibrio. Our study showed that high-density shrimp ponds had a higher prevalence of Vibrio, increased amounts of SPM, and higher phytoplankton abundances. To avoid rearing failure, these parameters have to be managed carefully, for example by providing adequate feed, maintaining pH level, and removing organic matter deposits regularly." @default.
- W2892417176 created "2018-10-05" @default.
- W2892417176 creator A5002514351 @default.
- W2892417176 creator A5028627412 @default.
- W2892417176 creator A5049778759 @default.
- W2892417176 creator A5057772753 @default.
- W2892417176 creator A5064945496 @default.
- W2892417176 creator A5073359175 @default.
- W2892417176 date "2018-10-18" @default.
- W2892417176 modified "2023-09-25" @default.
- W2892417176 title "Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities" @default.
- W2892417176 cites W1837827509 @default.
- W2892417176 cites W1968972717 @default.
- W2892417176 cites W1971509496 @default.
- W2892417176 cites W1983993275 @default.
- W2892417176 cites W1988465868 @default.
- W2892417176 cites W1989530484 @default.
- W2892417176 cites W1996597090 @default.
- W2892417176 cites W1998984361 @default.
- W2892417176 cites W2002533263 @default.
- W2892417176 cites W2003825165 @default.
- W2892417176 cites W2014051173 @default.
- W2892417176 cites W2017588560 @default.
- W2892417176 cites W2018907718 @default.
- W2892417176 cites W2027327645 @default.
- W2892417176 cites W2038557074 @default.
- W2892417176 cites W2040653294 @default.
- W2892417176 cites W2040948088 @default.
- W2892417176 cites W2041001212 @default.
- W2892417176 cites W2042516501 @default.
- W2892417176 cites W2043335627 @default.
- W2892417176 cites W2045723671 @default.
- W2892417176 cites W2050674685 @default.
- W2892417176 cites W2069108071 @default.
- W2892417176 cites W2072562195 @default.
- W2892417176 cites W2073014606 @default.
- W2892417176 cites W2092918968 @default.
- W2892417176 cites W2095713067 @default.
- W2892417176 cites W2099447616 @default.
- W2892417176 cites W2105855632 @default.
- W2892417176 cites W2111209628 @default.
- W2892417176 cites W2114392707 @default.
- W2892417176 cites W2115701239 @default.
- W2892417176 cites W2116184599 @default.
- W2892417176 cites W2120540191 @default.
- W2892417176 cites W2120562085 @default.
- W2892417176 cites W2123757949 @default.
- W2892417176 cites W2125813366 @default.
- W2892417176 cites W2128711701 @default.
- W2892417176 cites W2131271579 @default.
- W2892417176 cites W2131416368 @default.
- W2892417176 cites W2133763656 @default.
- W2892417176 cites W2136629429 @default.
- W2892417176 cites W2144991220 @default.
- W2892417176 cites W2146477949 @default.
- W2892417176 cites W2154496121 @default.
- W2892417176 cites W2156975150 @default.
- W2892417176 cites W2160209604 @default.
- W2892417176 cites W2169277573 @default.
- W2892417176 cites W2172537579 @default.
- W2892417176 cites W2293038334 @default.
- W2892417176 cites W2296468133 @default.
- W2892417176 cites W2343269995 @default.
- W2892417176 cites W2461613905 @default.
- W2892417176 cites W2538129033 @default.
- W2892417176 cites W2551990573 @default.
- W2892417176 cites W2555394495 @default.
- W2892417176 cites W2561875952 @default.
- W2892417176 cites W2586287295 @default.
- W2892417176 cites W2596147042 @default.
- W2892417176 cites W2732390622 @default.
- W2892417176 cites W2739753601 @default.
- W2892417176 cites W2761528027 @default.
- W2892417176 cites W2765234213 @default.
- W2892417176 cites W2768837139 @default.
- W2892417176 cites W4240190956 @default.
- W2892417176 doi "https://doi.org/10.3389/fmicb.2018.02457" @default.
- W2892417176 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6200860" @default.
- W2892417176 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30405548" @default.
- W2892417176 hasPublicationYear "2018" @default.
- W2892417176 type Work @default.
- W2892417176 sameAs 2892417176 @default.
- W2892417176 citedByCount "61" @default.
- W2892417176 countsByYear W28924171762019 @default.
- W2892417176 countsByYear W28924171762020 @default.
- W2892417176 countsByYear W28924171762021 @default.
- W2892417176 countsByYear W28924171762022 @default.
- W2892417176 countsByYear W28924171762023 @default.
- W2892417176 crossrefType "journal-article" @default.
- W2892417176 hasAuthorship W2892417176A5002514351 @default.
- W2892417176 hasAuthorship W2892417176A5028627412 @default.
- W2892417176 hasAuthorship W2892417176A5049778759 @default.
- W2892417176 hasAuthorship W2892417176A5057772753 @default.
- W2892417176 hasAuthorship W2892417176A5064945496 @default.
- W2892417176 hasAuthorship W2892417176A5073359175 @default.
- W2892417176 hasBestOaLocation W28924171761 @default.
- W2892417176 hasConcept C129513315 @default.
- W2892417176 hasConcept C144024400 @default.
- W2892417176 hasConcept C14849681 @default.
- W2892417176 hasConcept C149923435 @default.