Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892428097> ?p ?o ?g. }
- W2892428097 endingPage "1077" @default.
- W2892428097 startingPage "1065" @default.
- W2892428097 abstract "In unconventional reservoirs, as the effective pore size becomes close to the mean free path of gas molecules, gas transport in porous media begins to deviate from Darcy’s law. The objective of this study is to explore the similarities of gas flows in nanochannels and core samples as well as those simulated by direct simulation BGK (DSBGK), a particle-based method that solves the Bhatnagar-Gross-Krook (BGK) equation. Due to difficulties in fabrication and experimentation, previous study on gas flow experiments in nanochannels is very limited. In this work, steady-state gas flow was measured in reactive-ion etched nanochannels with a controlled channel size on a sillicon wafer. A core-based permeability measurement apparatus was used to perform steady-state gas flow measurements on carbonate and shale samples. Klinkenberg permeability was obtained under varying pore pressures but constant temperature and effective stress. Methane was used in nanofluidic and rock experiments, making them directly comparable. Results from both experiments were then compared to gas flow simulations by DSBGK method carried out on several independently constructed geometry models. DSBGK uses hundreds of millions of simulated molecules to approximate gas flow inside the pore space. The intermolecular collisions are handled by directly integrating the BGK equation along each molecules trajectory, rather than through a sampling scheme like that in the direct simulation Monte-Carlo (DSMC) method. Consequently, the stochastic noise is significantly reduced, and simulation of nano-scale gas flows in complex geometries becomes computationally affordable. The slippage factors obtained from these independent studies varied across three orders of magnitude, yet they all appear to collapse on a single scaling relation where the slippage factor in the slip flow regime is inversely proportional to the square root of intrinsic permeability over porosity. Our correlation could also fit the data in the literature, which were often obtained using nitrogen, after correcting for temperature and gas properties. This study contributes to rock characterization, well testing analysis as well as the understanding of rarefied gas transport in porous media." @default.
- W2892428097 created "2018-10-05" @default.
- W2892428097 creator A5014988682 @default.
- W2892428097 creator A5031790048 @default.
- W2892428097 creator A5043573635 @default.
- W2892428097 creator A5047861147 @default.
- W2892428097 creator A5070205215 @default.
- W2892428097 creator A5072993745 @default.
- W2892428097 date "2019-01-01" @default.
- W2892428097 modified "2023-10-06" @default.
- W2892428097 title "Scaling law for slip flow of gases in nanoporous media from nanofluidics, rocks, and pore-scale simulations" @default.
- W2892428097 cites W1710494295 @default.
- W2892428097 cites W1795539325 @default.
- W2892428097 cites W1966638383 @default.
- W2892428097 cites W1966799339 @default.
- W2892428097 cites W1966817315 @default.
- W2892428097 cites W1974271217 @default.
- W2892428097 cites W1992945611 @default.
- W2892428097 cites W1998798124 @default.
- W2892428097 cites W2005293247 @default.
- W2892428097 cites W2007283787 @default.
- W2892428097 cites W2018122198 @default.
- W2892428097 cites W2048981192 @default.
- W2892428097 cites W2051482618 @default.
- W2892428097 cites W2061122130 @default.
- W2892428097 cites W2066060292 @default.
- W2892428097 cites W2066795551 @default.
- W2892428097 cites W2068648992 @default.
- W2892428097 cites W2076649198 @default.
- W2892428097 cites W2077383297 @default.
- W2892428097 cites W2081561857 @default.
- W2892428097 cites W2085375600 @default.
- W2892428097 cites W2093147523 @default.
- W2892428097 cites W2096160713 @default.
- W2892428097 cites W2096221707 @default.
- W2892428097 cites W2126387283 @default.
- W2892428097 cites W2139406724 @default.
- W2892428097 cites W2147066508 @default.
- W2892428097 cites W2173813363 @default.
- W2892428097 cites W2228854202 @default.
- W2892428097 cites W2319204093 @default.
- W2892428097 cites W2570519094 @default.
- W2892428097 cites W2581215890 @default.
- W2892428097 cites W2583334364 @default.
- W2892428097 cites W2758364730 @default.
- W2892428097 cites W4248704726 @default.
- W2892428097 cites W2319718922 @default.
- W2892428097 doi "https://doi.org/10.1016/j.fuel.2018.09.036" @default.
- W2892428097 hasPublicationYear "2019" @default.
- W2892428097 type Work @default.
- W2892428097 sameAs 2892428097 @default.
- W2892428097 citedByCount "22" @default.
- W2892428097 countsByYear W28924280972019 @default.
- W2892428097 countsByYear W28924280972020 @default.
- W2892428097 countsByYear W28924280972021 @default.
- W2892428097 countsByYear W28924280972022 @default.
- W2892428097 countsByYear W28924280972023 @default.
- W2892428097 crossrefType "journal-article" @default.
- W2892428097 hasAuthorship W2892428097A5014988682 @default.
- W2892428097 hasAuthorship W2892428097A5031790048 @default.
- W2892428097 hasAuthorship W2892428097A5043573635 @default.
- W2892428097 hasAuthorship W2892428097A5047861147 @default.
- W2892428097 hasAuthorship W2892428097A5070205215 @default.
- W2892428097 hasAuthorship W2892428097A5072993745 @default.
- W2892428097 hasBestOaLocation W28924280971 @default.
- W2892428097 hasConcept C105569014 @default.
- W2892428097 hasConcept C120882062 @default.
- W2892428097 hasConcept C121332964 @default.
- W2892428097 hasConcept C159985019 @default.
- W2892428097 hasConcept C185592680 @default.
- W2892428097 hasConcept C192562407 @default.
- W2892428097 hasConcept C41625074 @default.
- W2892428097 hasConcept C55493867 @default.
- W2892428097 hasConcept C57879066 @default.
- W2892428097 hasConcept C6648577 @default.
- W2892428097 hasConceptScore W2892428097C105569014 @default.
- W2892428097 hasConceptScore W2892428097C120882062 @default.
- W2892428097 hasConceptScore W2892428097C121332964 @default.
- W2892428097 hasConceptScore W2892428097C159985019 @default.
- W2892428097 hasConceptScore W2892428097C185592680 @default.
- W2892428097 hasConceptScore W2892428097C192562407 @default.
- W2892428097 hasConceptScore W2892428097C41625074 @default.
- W2892428097 hasConceptScore W2892428097C55493867 @default.
- W2892428097 hasConceptScore W2892428097C57879066 @default.
- W2892428097 hasConceptScore W2892428097C6648577 @default.
- W2892428097 hasLocation W28924280971 @default.
- W2892428097 hasOpenAccess W2892428097 @default.
- W2892428097 hasPrimaryLocation W28924280971 @default.
- W2892428097 hasRelatedWork W1980838758 @default.
- W2892428097 hasRelatedWork W1999844787 @default.
- W2892428097 hasRelatedWork W2003154353 @default.
- W2892428097 hasRelatedWork W2029650635 @default.
- W2892428097 hasRelatedWork W2224586810 @default.
- W2892428097 hasRelatedWork W2388508898 @default.
- W2892428097 hasRelatedWork W2625029206 @default.
- W2892428097 hasRelatedWork W2779770081 @default.
- W2892428097 hasRelatedWork W4253214901 @default.
- W2892428097 hasRelatedWork W626428935 @default.