Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892437484> ?p ?o ?g. }
- W2892437484 endingPage "1538" @default.
- W2892437484 startingPage "1538" @default.
- W2892437484 abstract "This research aims at proposing a new artificial intelligence approach (namely RVM-ICA) which is based on the Relevance Vector Machine (RVM) and the Imperialist Competitive Algorithm (ICA) optimization for landslide susceptibility modeling. A Geographic Information System (GIS) spatial database was generated from Lang Son city in Lang Son province (Vietnam). This GIS database includes a landslide inventory map and fourteen landslide conditioning factors. The suitability of these factors for landslide susceptibility modeling in the study area was verified by the Information Gain Ratio (IGR) technique. A landslide susceptibility prediction model based on RVM-ICA and the GIS database was established by training and prediction phases. The predictive capability of the new approach was evaluated by calculations of sensitivity, specificity, accuracy, and the area under the Receiver Operating Characteristic curve (AUC). In addition, to assess the applicability of the proposed model, two state-of-the-art soft computing techniques including the support vector machine (SVM) and logistic regression (LR) were used as benchmark methods. The results of this study show that RVM-ICA with AUC = 0.92 achieved a high goodness-of-fit based on both the training and testing datasets. The predictive capability of RVM-ICA outperformed those of SVM with AUC = 0.91 and LR with AUC = 0.87. The experimental results confirm that the newly proposed model is a very promising alternative to assist planners and decision makers in the task of managing landslide prone areas." @default.
- W2892437484 created "2018-10-05" @default.
- W2892437484 creator A5018524441 @default.
- W2892437484 creator A5029814958 @default.
- W2892437484 creator A5035752085 @default.
- W2892437484 creator A5038919661 @default.
- W2892437484 creator A5051623706 @default.
- W2892437484 creator A5052041336 @default.
- W2892437484 creator A5056706783 @default.
- W2892437484 creator A5059530250 @default.
- W2892437484 creator A5076352077 @default.
- W2892437484 creator A5077439959 @default.
- W2892437484 creator A5091211368 @default.
- W2892437484 date "2018-09-25" @default.
- W2892437484 modified "2023-10-16" @default.
- W2892437484 title "A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides" @default.
- W2892437484 cites W1057892209 @default.
- W2892437484 cites W1964529706 @default.
- W2892437484 cites W1974616554 @default.
- W2892437484 cites W1976188291 @default.
- W2892437484 cites W1977069065 @default.
- W2892437484 cites W1979486410 @default.
- W2892437484 cites W1983631475 @default.
- W2892437484 cites W1986382962 @default.
- W2892437484 cites W1987342969 @default.
- W2892437484 cites W1988650824 @default.
- W2892437484 cites W1988988192 @default.
- W2892437484 cites W1989158271 @default.
- W2892437484 cites W1992329860 @default.
- W2892437484 cites W1993503838 @default.
- W2892437484 cites W1996933066 @default.
- W2892437484 cites W2001617968 @default.
- W2892437484 cites W2003049509 @default.
- W2892437484 cites W2006080919 @default.
- W2892437484 cites W2007086979 @default.
- W2892437484 cites W2012118327 @default.
- W2892437484 cites W2022164739 @default.
- W2892437484 cites W2029324310 @default.
- W2892437484 cites W2031550988 @default.
- W2892437484 cites W2035549409 @default.
- W2892437484 cites W2038161859 @default.
- W2892437484 cites W2040698615 @default.
- W2892437484 cites W2042229599 @default.
- W2892437484 cites W2042951326 @default.
- W2892437484 cites W2045076638 @default.
- W2892437484 cites W2045446319 @default.
- W2892437484 cites W2045518796 @default.
- W2892437484 cites W2046766224 @default.
- W2892437484 cites W2053280690 @default.
- W2892437484 cites W2054036854 @default.
- W2892437484 cites W2056214587 @default.
- W2892437484 cites W2060382151 @default.
- W2892437484 cites W2061160968 @default.
- W2892437484 cites W2063958435 @default.
- W2892437484 cites W2064776222 @default.
- W2892437484 cites W2065949495 @default.
- W2892437484 cites W2075513266 @default.
- W2892437484 cites W2078964569 @default.
- W2892437484 cites W2080134555 @default.
- W2892437484 cites W2082622325 @default.
- W2892437484 cites W2087983598 @default.
- W2892437484 cites W2089645904 @default.
- W2892437484 cites W2096961829 @default.
- W2892437484 cites W2097698267 @default.
- W2892437484 cites W2108791835 @default.
- W2892437484 cites W2120630093 @default.
- W2892437484 cites W2122910451 @default.
- W2892437484 cites W2130114970 @default.
- W2892437484 cites W2134702142 @default.
- W2892437484 cites W2134955829 @default.
- W2892437484 cites W2137486440 @default.
- W2892437484 cites W2158698691 @default.
- W2892437484 cites W2165979967 @default.
- W2892437484 cites W2171612326 @default.
- W2892437484 cites W2193898033 @default.
- W2892437484 cites W2200394127 @default.
- W2892437484 cites W2205158676 @default.
- W2892437484 cites W2205658384 @default.
- W2892437484 cites W2221487567 @default.
- W2892437484 cites W2223806373 @default.
- W2892437484 cites W2229346331 @default.
- W2892437484 cites W2342016430 @default.
- W2892437484 cites W2343905117 @default.
- W2892437484 cites W2346511712 @default.
- W2892437484 cites W2443678480 @default.
- W2892437484 cites W2489814317 @default.
- W2892437484 cites W2524483710 @default.
- W2892437484 cites W2533677567 @default.
- W2892437484 cites W2567854072 @default.
- W2892437484 cites W2589052052 @default.
- W2892437484 cites W2591059985 @default.
- W2892437484 cites W2604664392 @default.
- W2892437484 cites W2610585665 @default.
- W2892437484 cites W2615890952 @default.
- W2892437484 cites W2617146439 @default.
- W2892437484 cites W2621028994 @default.
- W2892437484 cites W2755533000 @default.
- W2892437484 cites W2758350461 @default.