Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892439819> ?p ?o ?g. }
- W2892439819 endingPage "13986" @default.
- W2892439819 startingPage "13973" @default.
- W2892439819 abstract "Machine learning the electronic structure of open shell transition metal complexes presents unique challenges, including robust and automated data set generation. Here, we introduce tools that simplify data acquisition from density functional theory (DFT) and validation of trained machine learning models using the molSimplify automatic design (mAD) workflow. We demonstrate this workflow by training and comparing the performance of LASSO, kernel ridge regression (KRR), and artificial neural network (ANN) models using heuristic, topological revised autocorrelation (RAC) descriptors we have recently introduced for machine learning inorganic chemistry. On a series of open shell transition metal complexes, we evaluate set aside test errors of these models for predicting the HOMO level and HOMO–LUMO gap. The best performing models are ANNs, which show 0.15 and 0.25 eV test set mean absolute errors on the HOMO level and HOMO–LUMO gap, respectively. Poor performing KRR models using the full 153-feature RAC set are improved to nearly the same performance as the ANNs when trained on down-selected subsets of 20–30 features. Analysis of the essential descriptors for HOMO level and HOMO–LUMO gap prediction as well as comparison to subsets previously obtained for other properties reveal the paramount importance of nonlocal, steric properties in determining frontier molecular orbital energetics. We demonstrate our model performance on diverse complexes and in the discovery of molecules with target HOMO–LUMO gaps from a large 15,000 molecule design space in minutes rather than days that full DFT evaluation would require." @default.
- W2892439819 created "2018-10-05" @default.
- W2892439819 creator A5010902895 @default.
- W2892439819 creator A5029457626 @default.
- W2892439819 creator A5030485362 @default.
- W2892439819 creator A5038652876 @default.
- W2892439819 creator A5050671822 @default.
- W2892439819 date "2018-09-24" @default.
- W2892439819 modified "2023-10-14" @default.
- W2892439819 title "Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry" @default.
- W2892439819 cites W1593284678 @default.
- W2892439819 cites W1756216110 @default.
- W2892439819 cites W1970512969 @default.
- W2892439819 cites W1971044734 @default.
- W2892439819 cites W1973443611 @default.
- W2892439819 cites W1984705693 @default.
- W2892439819 cites W1990151518 @default.
- W2892439819 cites W1992985800 @default.
- W2892439819 cites W1995070176 @default.
- W2892439819 cites W1995401997 @default.
- W2892439819 cites W2015197254 @default.
- W2892439819 cites W2017425597 @default.
- W2892439819 cites W2018112724 @default.
- W2892439819 cites W2023271753 @default.
- W2892439819 cites W2025444507 @default.
- W2892439819 cites W2028133395 @default.
- W2892439819 cites W2028265407 @default.
- W2892439819 cites W2029413789 @default.
- W2892439819 cites W2042490355 @default.
- W2892439819 cites W2044245133 @default.
- W2892439819 cites W2045162020 @default.
- W2892439819 cites W2050419919 @default.
- W2892439819 cites W2060943125 @default.
- W2892439819 cites W2068617439 @default.
- W2892439819 cites W2074974429 @default.
- W2892439819 cites W2077796804 @default.
- W2892439819 cites W2080635178 @default.
- W2892439819 cites W2087520462 @default.
- W2892439819 cites W2088157201 @default.
- W2892439819 cites W2104489082 @default.
- W2892439819 cites W2110791536 @default.
- W2892439819 cites W2112969083 @default.
- W2892439819 cites W2117363206 @default.
- W2892439819 cites W2123306226 @default.
- W2892439819 cites W2134164499 @default.
- W2892439819 cites W2134329894 @default.
- W2892439819 cites W2136567909 @default.
- W2892439819 cites W2143981217 @default.
- W2892439819 cites W2148284063 @default.
- W2892439819 cites W2154115947 @default.
- W2892439819 cites W2163052154 @default.
- W2892439819 cites W2164524421 @default.
- W2892439819 cites W2169678694 @default.
- W2892439819 cites W2176516200 @default.
- W2892439819 cites W2189149359 @default.
- W2892439819 cites W2291630287 @default.
- W2892439819 cites W2312476041 @default.
- W2892439819 cites W2316351572 @default.
- W2892439819 cites W2329717581 @default.
- W2892439819 cites W2335438204 @default.
- W2892439819 cites W2340900686 @default.
- W2892439819 cites W2464735106 @default.
- W2892439819 cites W2470683402 @default.
- W2892439819 cites W2478294658 @default.
- W2892439819 cites W2507946536 @default.
- W2892439819 cites W2517075799 @default.
- W2892439819 cites W2539411689 @default.
- W2892439819 cites W2541404351 @default.
- W2892439819 cites W2547447472 @default.
- W2892439819 cites W2557357399 @default.
- W2892439819 cites W2558999090 @default.
- W2892439819 cites W2563751252 @default.
- W2892439819 cites W2568191866 @default.
- W2892439819 cites W2587210624 @default.
- W2892439819 cites W2594183968 @default.
- W2892439819 cites W2597785328 @default.
- W2892439819 cites W2601081289 @default.
- W2892439819 cites W2604906708 @default.
- W2892439819 cites W2605925159 @default.
- W2892439819 cites W2729355062 @default.
- W2892439819 cites W2749580687 @default.
- W2892439819 cites W2768213699 @default.
- W2892439819 cites W2771888471 @default.
- W2892439819 cites W2774527579 @default.
- W2892439819 cites W2778051509 @default.
- W2892439819 cites W2785813126 @default.
- W2892439819 cites W2786308452 @default.
- W2892439819 cites W2787894218 @default.
- W2892439819 cites W2788873578 @default.
- W2892439819 cites W2797402103 @default.
- W2892439819 cites W2799567665 @default.
- W2892439819 cites W2800168263 @default.
- W2892439819 cites W2800685931 @default.
- W2892439819 cites W2802185815 @default.
- W2892439819 cites W2807691742 @default.
- W2892439819 cites W2810048461 @default.
- W2892439819 cites W2911964244 @default.
- W2892439819 cites W2963784900 @default.