Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892474211> ?p ?o ?g. }
- W2892474211 endingPage "77" @default.
- W2892474211 startingPage "64" @default.
- W2892474211 abstract "Cardiovascular diseases (CVDs) are severe diseases whose growing incidence worldwide has spurred increased national healthcare spending. Despite numerous diagnostic and treatment suggestions, CVDs continue to merit investigation due to their diverse risk factors, some of which are positively, negatively, or not correlated. To assist doctors and researchers in identifying the significance of CVD risk factors, in this study we propose a novel ranking and attribute (or feature) selection algorithm. We applied seven popular machine learning technologies to generate attribute-ranked datasets in order to identify the ideal number of factors/attributes for each classifier. Above all, the results of the comparisons indicate that the performance of parts of factors after ranking and attribute selection was significantly better than the performance of whole factors and that of several state-of-the-art algorithms. Since such knowledge can aid the proper selection of factors of CVD patients and thereby assist doctors in making better decisions in diagnostics and treatment, our results can reduce treatment costs and thus lower the economic burden of healthcare." @default.
- W2892474211 created "2018-10-05" @default.
- W2892474211 creator A5042420817 @default.
- W2892474211 date "2018-11-01" @default.
- W2892474211 modified "2023-09-24" @default.
- W2892474211 title "A decision-making mechanism for assessing risk factor significance in cardiovascular diseases" @default.
- W2892474211 cites W1122642768 @default.
- W2892474211 cites W1964210890 @default.
- W2892474211 cites W1964614255 @default.
- W2892474211 cites W1967396805 @default.
- W2892474211 cites W1970086181 @default.
- W2892474211 cites W1985967126 @default.
- W2892474211 cites W1987021626 @default.
- W2892474211 cites W1994201240 @default.
- W2892474211 cites W2009540290 @default.
- W2892474211 cites W2029131043 @default.
- W2892474211 cites W2032485049 @default.
- W2892474211 cites W2035743720 @default.
- W2892474211 cites W2058610272 @default.
- W2892474211 cites W2061620193 @default.
- W2892474211 cites W2078511730 @default.
- W2892474211 cites W2081126477 @default.
- W2892474211 cites W2089865619 @default.
- W2892474211 cites W2096405830 @default.
- W2892474211 cites W2109115250 @default.
- W2892474211 cites W2110833991 @default.
- W2892474211 cites W2113890143 @default.
- W2892474211 cites W2116404316 @default.
- W2892474211 cites W2116723988 @default.
- W2892474211 cites W2117371518 @default.
- W2892474211 cites W2121148202 @default.
- W2892474211 cites W2128722360 @default.
- W2892474211 cites W2129977294 @default.
- W2892474211 cites W2142179136 @default.
- W2892474211 cites W2149772057 @default.
- W2892474211 cites W2154053567 @default.
- W2892474211 cites W2156483112 @default.
- W2892474211 cites W2163092745 @default.
- W2892474211 cites W2163693992 @default.
- W2892474211 cites W2165885026 @default.
- W2892474211 cites W2326738542 @default.
- W2892474211 cites W2414496760 @default.
- W2892474211 cites W2593370983 @default.
- W2892474211 cites W2757825312 @default.
- W2892474211 cites W2788354690 @default.
- W2892474211 cites W2962904896 @default.
- W2892474211 cites W4212883601 @default.
- W2892474211 doi "https://doi.org/10.1016/j.dss.2018.09.004" @default.
- W2892474211 hasPublicationYear "2018" @default.
- W2892474211 type Work @default.
- W2892474211 sameAs 2892474211 @default.
- W2892474211 citedByCount "10" @default.
- W2892474211 countsByYear W28924742112020 @default.
- W2892474211 countsByYear W28924742112021 @default.
- W2892474211 countsByYear W28924742112022 @default.
- W2892474211 crossrefType "journal-article" @default.
- W2892474211 hasAuthorship W2892474211A5042420817 @default.
- W2892474211 hasConcept C111472728 @default.
- W2892474211 hasConcept C112930515 @default.
- W2892474211 hasConcept C119857082 @default.
- W2892474211 hasConcept C124101348 @default.
- W2892474211 hasConcept C138885662 @default.
- W2892474211 hasConcept C148483581 @default.
- W2892474211 hasConcept C154945302 @default.
- W2892474211 hasConcept C189430467 @default.
- W2892474211 hasConcept C41008148 @default.
- W2892474211 hasConcept C71924100 @default.
- W2892474211 hasConcept C81917197 @default.
- W2892474211 hasConcept C89611455 @default.
- W2892474211 hasConcept C95623464 @default.
- W2892474211 hasConceptScore W2892474211C111472728 @default.
- W2892474211 hasConceptScore W2892474211C112930515 @default.
- W2892474211 hasConceptScore W2892474211C119857082 @default.
- W2892474211 hasConceptScore W2892474211C124101348 @default.
- W2892474211 hasConceptScore W2892474211C138885662 @default.
- W2892474211 hasConceptScore W2892474211C148483581 @default.
- W2892474211 hasConceptScore W2892474211C154945302 @default.
- W2892474211 hasConceptScore W2892474211C189430467 @default.
- W2892474211 hasConceptScore W2892474211C41008148 @default.
- W2892474211 hasConceptScore W2892474211C71924100 @default.
- W2892474211 hasConceptScore W2892474211C81917197 @default.
- W2892474211 hasConceptScore W2892474211C89611455 @default.
- W2892474211 hasConceptScore W2892474211C95623464 @default.
- W2892474211 hasFunder F4320322795 @default.
- W2892474211 hasLocation W28924742111 @default.
- W2892474211 hasOpenAccess W2892474211 @default.
- W2892474211 hasPrimaryLocation W28924742111 @default.
- W2892474211 hasRelatedWork W2088772087 @default.
- W2892474211 hasRelatedWork W2556319748 @default.
- W2892474211 hasRelatedWork W2748952813 @default.
- W2892474211 hasRelatedWork W2899084033 @default.
- W2892474211 hasRelatedWork W2961085424 @default.
- W2892474211 hasRelatedWork W3087493185 @default.
- W2892474211 hasRelatedWork W3200179079 @default.
- W2892474211 hasRelatedWork W4288748750 @default.
- W2892474211 hasRelatedWork W4293525103 @default.
- W2892474211 hasRelatedWork W4306674287 @default.
- W2892474211 hasVolume "115" @default.