Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892474896> ?p ?o ?g. }
- W2892474896 abstract "The petrogenesis and metal content of hornblende-rich xenoliths hosted in Laramide-age magmas at Santa Rita and Cerrillos, both in New Mexico (USA), were reconstructed by detailed petrographic studies and laser ablation inductively coupled plasma mass spectrometry analysis of minerals, melt inclusions and sulfide inclusions. The xenoliths from both locations record an evolution from clinopyroxene + olivine + phlogopite cumulates (1000–1100°C), through nearly pure hornblendites (920–1000°C), to hornblende + plagioclase cumulates (830–950°C) and hornblende gabbros (850–910°C) that crystallized at a depth of 10–20 km. In contrast to cumulates formed by gravitational settling of phenocrysts from magmas, the abundant hornblendite lithologies seem to have formed by reaction of residual melts with previously crystallized clinopyroxene + olivine + phlogopite assemblages in a crystal mush environment. The mafic melts (≤47–53 wt % SiO2) that produced the clinopyroxene + olivine + phlogopite cumulates were sulfide-undersaturated, whereas more evolved melts (>53 to 65 wt % SiO2) were generally saturated in sulfides ± anhydrite. The reaction-replacement hornblendites contained up to 0·8 wt % magmatic sulfides, which occur mostly in the form of monosulfide solid solution containing 1–8 wt % Cu, 0·1–2·2 wt % Ni, 1–15 ppm Ag and 0·1–1·3 ppm Au, but rarely also in the form of intermediate solid solution containing up to 37 wt % Cu, 0·5 wt % Ni, 1100 ppm Ag and 190 ppm Au. Quantitative modeling reproduces well the Cu evolution recorded in sulfide inclusions and melt inclusions in xenoliths and porphyry dikes at Santa Rita, with the Cu content of magmatic sulfides and silicate melts decreasing dramatically within a narrow melt SiO2 interval of 55–58 wt % once sulfide saturation was reached, and then declining more gradually to ∼1·5 log units lower values. These results suggest that the formation of hornblende-rich lithologies during the ascent of primitive arc magmas through the crust should have a negative influence on the mineralization potential of the residual liquids (≥55–60 wt % SiO2), even if the magmas are relatively oxidized (∼2 log units above the fayalite–magnetite–quartz fO2 buffer). However, the same process also seems to be responsible for the characteristically high Sr/Y ratios of fertile magmas. The apparent contradiction may be solved if either significant amounts of mafic magma are involved in the formation of the upper crustal magma chambers beneath porphyry Cu ± Mo ± Au deposits or magma fertility does not depend primarily on metal content but rather on other factors." @default.
- W2892474896 created "2018-10-05" @default.
- W2892474896 creator A5016809372 @default.
- W2892474896 creator A5066572736 @default.
- W2892474896 date "2018-08-29" @default.
- W2892474896 modified "2023-10-17" @default.
- W2892474896 title "Petrogenesis and Metal Content of Hornblende-Rich Xenoliths from Two Laramide-age Magma Systems in Southwestern USA: Insights into the Metal Budget of Arc Magmas" @default.
- W2892474896 cites W1532025764 @default.
- W2892474896 cites W1963621169 @default.
- W2892474896 cites W1968681946 @default.
- W2892474896 cites W1974957554 @default.
- W2892474896 cites W1977929410 @default.
- W2892474896 cites W1980080656 @default.
- W2892474896 cites W1981756317 @default.
- W2892474896 cites W1982133624 @default.
- W2892474896 cites W1984112525 @default.
- W2892474896 cites W1988339658 @default.
- W2892474896 cites W1988369251 @default.
- W2892474896 cites W1991589759 @default.
- W2892474896 cites W1993984220 @default.
- W2892474896 cites W1998238994 @default.
- W2892474896 cites W1999493995 @default.
- W2892474896 cites W2007094924 @default.
- W2892474896 cites W2010149376 @default.
- W2892474896 cites W2011599012 @default.
- W2892474896 cites W2014333968 @default.
- W2892474896 cites W2019877001 @default.
- W2892474896 cites W2020856026 @default.
- W2892474896 cites W2022836659 @default.
- W2892474896 cites W2026295157 @default.
- W2892474896 cites W2027877967 @default.
- W2892474896 cites W2030023077 @default.
- W2892474896 cites W2035297658 @default.
- W2892474896 cites W2037708864 @default.
- W2892474896 cites W2039517403 @default.
- W2892474896 cites W2046166301 @default.
- W2892474896 cites W2047963618 @default.
- W2892474896 cites W2055500440 @default.
- W2892474896 cites W2057218369 @default.
- W2892474896 cites W2059683457 @default.
- W2892474896 cites W2062340070 @default.
- W2892474896 cites W2072618050 @default.
- W2892474896 cites W2072674126 @default.
- W2892474896 cites W2072976733 @default.
- W2892474896 cites W2073113143 @default.
- W2892474896 cites W2076996204 @default.
- W2892474896 cites W2079851347 @default.
- W2892474896 cites W2082844473 @default.
- W2892474896 cites W2083301424 @default.
- W2892474896 cites W2085064498 @default.
- W2892474896 cites W2085236052 @default.
- W2892474896 cites W2085881094 @default.
- W2892474896 cites W2087292109 @default.
- W2892474896 cites W2088622090 @default.
- W2892474896 cites W2093814974 @default.
- W2892474896 cites W2094200359 @default.
- W2892474896 cites W2095298264 @default.
- W2892474896 cites W2096412737 @default.
- W2892474896 cites W2097826067 @default.
- W2892474896 cites W2099995121 @default.
- W2892474896 cites W2100998381 @default.
- W2892474896 cites W2103541815 @default.
- W2892474896 cites W2110609253 @default.
- W2892474896 cites W2119091455 @default.
- W2892474896 cites W2119634987 @default.
- W2892474896 cites W2125201059 @default.
- W2892474896 cites W2126464523 @default.
- W2892474896 cites W2145631550 @default.
- W2892474896 cites W2145898590 @default.
- W2892474896 cites W2147036030 @default.
- W2892474896 cites W2153415850 @default.
- W2892474896 cites W2157395917 @default.
- W2892474896 cites W2165394332 @default.
- W2892474896 cites W2165495127 @default.
- W2892474896 cites W2171112412 @default.
- W2892474896 cites W2300198198 @default.
- W2892474896 cites W2315364250 @default.
- W2892474896 cites W2322815188 @default.
- W2892474896 cites W2324444940 @default.
- W2892474896 cites W2325843105 @default.
- W2892474896 cites W2340888552 @default.
- W2892474896 cites W2469026199 @default.
- W2892474896 cites W2516361767 @default.
- W2892474896 cites W2526621194 @default.
- W2892474896 cites W2533806360 @default.
- W2892474896 cites W2561508798 @default.
- W2892474896 cites W2586637931 @default.
- W2892474896 cites W2604867895 @default.
- W2892474896 cites W2760959914 @default.
- W2892474896 cites W4234912205 @default.
- W2892474896 cites W4249820190 @default.
- W2892474896 cites W4253923930 @default.
- W2892474896 cites W4380605854 @default.
- W2892474896 doi "https://doi.org/10.1093/petrology/egy083" @default.
- W2892474896 hasPublicationYear "2018" @default.
- W2892474896 type Work @default.
- W2892474896 sameAs 2892474896 @default.
- W2892474896 citedByCount "6" @default.
- W2892474896 countsByYear W28924748962018 @default.
- W2892474896 countsByYear W28924748962020 @default.