Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892485383> ?p ?o ?g. }
- W2892485383 endingPage "781" @default.
- W2892485383 startingPage "774" @default.
- W2892485383 abstract "Hot spot residues bring into play the vital function in bioinformatics to find new medications such as drug design. However, current datasets are predominately composed of non-hot spots with merely a tiny percentage of hot spots. Conventional hot spots prediction methods may face great challenges towards the problem of imbalance training samples. This paper presents a classification method combining with random forest classification and oversampling strategy to improve the training performance. A strategy with an oversampling ability is used to generate hot spots data to balance the given training set. Random forest classification is then invoked to generate a set of forest trees for this oversampled training set. The final prediction performance can be computed recursively after the oversampling and training process. This proposed method is capable of randomly selecting features and constructing a robust random forest to avoid overfitting the training set. Experimental results from three data sets indicate that the performance of hot spots prediction has been significantly improved compared with existing classification methods." @default.
- W2892485383 created "2018-10-05" @default.
- W2892485383 creator A5017373294 @default.
- W2892485383 creator A5046975280 @default.
- W2892485383 creator A5048918848 @default.
- W2892485383 creator A5073091775 @default.
- W2892485383 creator A5083014172 @default.
- W2892485383 date "2019-05-01" @default.
- W2892485383 modified "2023-10-16" @default.
- W2892485383 title "Efficiently Predicting Hot Spots in PPIs by Combining Random Forest and Synthetic Minority Over-Sampling Technique" @default.
- W2892485383 cites W1625079248 @default.
- W2892485383 cites W1969996697 @default.
- W2892485383 cites W1987951943 @default.
- W2892485383 cites W1999390565 @default.
- W2892485383 cites W2005168140 @default.
- W2892485383 cites W2005957699 @default.
- W2892485383 cites W2007102276 @default.
- W2892485383 cites W2013988051 @default.
- W2892485383 cites W2018658696 @default.
- W2892485383 cites W2022148737 @default.
- W2892485383 cites W2033893117 @default.
- W2892485383 cites W2034326919 @default.
- W2892485383 cites W2039058965 @default.
- W2892485383 cites W2042093985 @default.
- W2892485383 cites W2048917743 @default.
- W2892485383 cites W2051710717 @default.
- W2892485383 cites W2052034930 @default.
- W2892485383 cites W2063399687 @default.
- W2892485383 cites W2072519649 @default.
- W2892485383 cites W2074719974 @default.
- W2892485383 cites W2079035862 @default.
- W2892485383 cites W2082268161 @default.
- W2892485383 cites W2087574732 @default.
- W2892485383 cites W2091411809 @default.
- W2892485383 cites W2092387745 @default.
- W2892485383 cites W2094397139 @default.
- W2892485383 cites W2097463865 @default.
- W2892485383 cites W2097651980 @default.
- W2892485383 cites W2103485392 @default.
- W2892485383 cites W2103860090 @default.
- W2892485383 cites W2112632190 @default.
- W2892485383 cites W2115156437 @default.
- W2892485383 cites W2127495252 @default.
- W2892485383 cites W2127616922 @default.
- W2892485383 cites W2134056721 @default.
- W2892485383 cites W2137009853 @default.
- W2892485383 cites W2141624700 @default.
- W2892485383 cites W2145955247 @default.
- W2892485383 cites W2146312020 @default.
- W2892485383 cites W2147339185 @default.
- W2892485383 cites W2148143831 @default.
- W2892485383 cites W2155004936 @default.
- W2892485383 cites W2157735020 @default.
- W2892485383 cites W2157807259 @default.
- W2892485383 cites W2168164063 @default.
- W2892485383 cites W2176428851 @default.
- W2892485383 cites W2290562923 @default.
- W2892485383 cites W2318428700 @default.
- W2892485383 cites W2329592726 @default.
- W2892485383 cites W2335292707 @default.
- W2892485383 cites W2341018731 @default.
- W2892485383 cites W2463458349 @default.
- W2892485383 cites W2486276478 @default.
- W2892485383 cites W2491589621 @default.
- W2892485383 cites W2911964244 @default.
- W2892485383 cites W374160062 @default.
- W2892485383 doi "https://doi.org/10.1109/tcbb.2018.2871674" @default.
- W2892485383 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33156780" @default.
- W2892485383 hasPublicationYear "2019" @default.
- W2892485383 type Work @default.
- W2892485383 sameAs 2892485383 @default.
- W2892485383 citedByCount "16" @default.
- W2892485383 countsByYear W28924853832020 @default.
- W2892485383 countsByYear W28924853832021 @default.
- W2892485383 countsByYear W28924853832022 @default.
- W2892485383 countsByYear W28924853832023 @default.
- W2892485383 crossrefType "journal-article" @default.
- W2892485383 hasAuthorship W2892485383A5017373294 @default.
- W2892485383 hasAuthorship W2892485383A5046975280 @default.
- W2892485383 hasAuthorship W2892485383A5048918848 @default.
- W2892485383 hasAuthorship W2892485383A5073091775 @default.
- W2892485383 hasAuthorship W2892485383A5083014172 @default.
- W2892485383 hasConcept C106131492 @default.
- W2892485383 hasConcept C111919701 @default.
- W2892485383 hasConcept C119857082 @default.
- W2892485383 hasConcept C124101348 @default.
- W2892485383 hasConcept C140779682 @default.
- W2892485383 hasConcept C144024400 @default.
- W2892485383 hasConcept C147789679 @default.
- W2892485383 hasConcept C153180895 @default.
- W2892485383 hasConcept C154945302 @default.
- W2892485383 hasConcept C169258074 @default.
- W2892485383 hasConcept C177264268 @default.
- W2892485383 hasConcept C185592680 @default.
- W2892485383 hasConcept C197323446 @default.
- W2892485383 hasConcept C199360897 @default.
- W2892485383 hasConcept C199672914 @default.
- W2892485383 hasConcept C22019652 @default.