Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892498844> ?p ?o ?g. }
- W2892498844 endingPage "17837" @default.
- W2892498844 startingPage "17829" @default.
- W2892498844 abstract "Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment–sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers. Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment–sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers." @default.
- W2892498844 created "2018-10-05" @default.
- W2892498844 creator A5005286446 @default.
- W2892498844 creator A5006937517 @default.
- W2892498844 creator A5030948931 @default.
- W2892498844 creator A5033638130 @default.
- W2892498844 creator A5034482985 @default.
- W2892498844 creator A5036919604 @default.
- W2892498844 creator A5037987036 @default.
- W2892498844 creator A5041153378 @default.
- W2892498844 creator A5067658115 @default.
- W2892498844 creator A5070295826 @default.
- W2892498844 creator A5075275032 @default.
- W2892498844 creator A5091676865 @default.
- W2892498844 date "2018-11-01" @default.
- W2892498844 modified "2023-10-18" @default.
- W2892498844 title "Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging" @default.
- W2892498844 cites W1578291413 @default.
- W2892498844 cites W1584828549 @default.
- W2892498844 cites W2005528673 @default.
- W2892498844 cites W2005760671 @default.
- W2892498844 cites W2006352011 @default.
- W2892498844 cites W2031211461 @default.
- W2892498844 cites W2039139292 @default.
- W2892498844 cites W2047893575 @default.
- W2892498844 cites W2051743481 @default.
- W2892498844 cites W2071498240 @default.
- W2892498844 cites W2100965400 @default.
- W2892498844 cites W2100970263 @default.
- W2892498844 cites W2121098984 @default.
- W2892498844 cites W2141569270 @default.
- W2892498844 cites W2149210130 @default.
- W2892498844 cites W2150609534 @default.
- W2892498844 cites W2151317340 @default.
- W2892498844 cites W2161112598 @default.
- W2892498844 cites W2181283187 @default.
- W2892498844 cites W2248499526 @default.
- W2892498844 cites W2262087934 @default.
- W2892498844 cites W2404460725 @default.
- W2892498844 cites W2567987817 @default.
- W2892498844 cites W2586777675 @default.
- W2892498844 cites W2595857857 @default.
- W2892498844 cites W2605070587 @default.
- W2892498844 cites W2620746860 @default.
- W2892498844 cites W2620798309 @default.
- W2892498844 cites W2664930764 @default.
- W2892498844 cites W2724500088 @default.
- W2892498844 cites W4211087830 @default.
- W2892498844 doi "https://doi.org/10.1074/jbc.ra118.004846" @default.
- W2892498844 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6240862" @default.
- W2892498844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30262668" @default.
- W2892498844 hasPublicationYear "2018" @default.
- W2892498844 type Work @default.
- W2892498844 sameAs 2892498844 @default.
- W2892498844 citedByCount "25" @default.
- W2892498844 countsByYear W28924988442019 @default.
- W2892498844 countsByYear W28924988442020 @default.
- W2892498844 countsByYear W28924988442021 @default.
- W2892498844 countsByYear W28924988442022 @default.
- W2892498844 countsByYear W28924988442023 @default.
- W2892498844 crossrefType "journal-article" @default.
- W2892498844 hasAuthorship W2892498844A5005286446 @default.
- W2892498844 hasAuthorship W2892498844A5006937517 @default.
- W2892498844 hasAuthorship W2892498844A5030948931 @default.
- W2892498844 hasAuthorship W2892498844A5033638130 @default.
- W2892498844 hasAuthorship W2892498844A5034482985 @default.
- W2892498844 hasAuthorship W2892498844A5036919604 @default.
- W2892498844 hasAuthorship W2892498844A5037987036 @default.
- W2892498844 hasAuthorship W2892498844A5041153378 @default.
- W2892498844 hasAuthorship W2892498844A5067658115 @default.
- W2892498844 hasAuthorship W2892498844A5070295826 @default.
- W2892498844 hasAuthorship W2892498844A5075275032 @default.
- W2892498844 hasAuthorship W2892498844A5091676865 @default.
- W2892498844 hasBestOaLocation W28924988441 @default.
- W2892498844 hasConcept C121608353 @default.
- W2892498844 hasConcept C126322002 @default.
- W2892498844 hasConcept C134018914 @default.
- W2892498844 hasConcept C170493617 @default.
- W2892498844 hasConcept C202751555 @default.
- W2892498844 hasConcept C2777899217 @default.
- W2892498844 hasConcept C2777911890 @default.
- W2892498844 hasConcept C2779279991 @default.
- W2892498844 hasConcept C2779723316 @default.
- W2892498844 hasConcept C2779881493 @default.
- W2892498844 hasConcept C2779907587 @default.
- W2892498844 hasConcept C2780192828 @default.
- W2892498844 hasConcept C502942594 @default.
- W2892498844 hasConcept C55493867 @default.
- W2892498844 hasConcept C61367390 @default.
- W2892498844 hasConcept C63263939 @default.
- W2892498844 hasConcept C71315377 @default.
- W2892498844 hasConcept C71924100 @default.
- W2892498844 hasConcept C7876069 @default.
- W2892498844 hasConcept C86803240 @default.
- W2892498844 hasConcept C87644729 @default.
- W2892498844 hasConceptScore W2892498844C121608353 @default.
- W2892498844 hasConceptScore W2892498844C126322002 @default.
- W2892498844 hasConceptScore W2892498844C134018914 @default.