Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892556724> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2892556724 endingPage "4830" @default.
- W2892556724 startingPage "4815" @default.
- W2892556724 abstract "Internet of Things (IoT) plays an increasingly significant role in our daily activities, connecting physical objects around us into digital services. In other words, IoT is the driving force behind home automation, smart cities, modern health systems, and advanced manufacturing. This also increases the likelihood of cyber threats against IoT devices and services. Attackers may attempt to exploit vulnerabilities in application protocols, including Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP) and Message Queue Telemetry Transport (MQTT) that interact directly with backend database systems and client–server applications to store data of IoT services. Successful exploitation of one or more of these protocols can result in data leakage and security breaches. In this paper, an ensemble intrusion detection technique is proposed to mitigate malicious events, in particular botnet attacks against DNS, HTTP, and MQTT protocols utilized in IoT networks. New statistical flow features are generated from the protocols based on an analysis of their potential properties. Then, an AdaBoost ensemble learning method is developed using three machine learning techniques, namely decision tree, Naive Bayes (NB), and artificial neural network, to evaluate the effect of these features and detect malicious events effectively. The UNSW-NB15 and NIMS botnet datasets with simulated IoT sensors’ data are used to extract the proposed features and evaluate the ensemble technique. The experimental results show that the proposed features have the potential characteristics of normal and malicious activity using the correntropy and correlation coefficient measures. Moreover, the proposed ensemble technique provides a higher detection rate and a lower false positive rate compared with each classification technique included in the framework and three other state-of-the-art techniques." @default.
- W2892556724 created "2018-10-05" @default.
- W2892556724 creator A5001746807 @default.
- W2892556724 creator A5022626159 @default.
- W2892556724 creator A5089327837 @default.
- W2892556724 date "2019-06-01" @default.
- W2892556724 modified "2023-10-17" @default.
- W2892556724 title "An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things" @default.
- W2892556724 cites W1657049324 @default.
- W2892556724 cites W1963669090 @default.
- W2892556724 cites W2004918970 @default.
- W2892556724 cites W2021137987 @default.
- W2892556724 cites W2022350629 @default.
- W2892556724 cites W2032477387 @default.
- W2892556724 cites W2035408731 @default.
- W2892556724 cites W2085196969 @default.
- W2892556724 cites W2105779206 @default.
- W2892556724 cites W2143325120 @default.
- W2892556724 cites W2168248885 @default.
- W2892556724 cites W2296509296 @default.
- W2892556724 cites W2331488455 @default.
- W2892556724 cites W2342690304 @default.
- W2892556724 cites W2528500008 @default.
- W2892556724 cites W2557450880 @default.
- W2892556724 cites W2565045400 @default.
- W2892556724 cites W2792450155 @default.
- W2892556724 cites W2796624525 @default.
- W2892556724 doi "https://doi.org/10.1109/jiot.2018.2871719" @default.
- W2892556724 hasPublicationYear "2019" @default.
- W2892556724 type Work @default.
- W2892556724 sameAs 2892556724 @default.
- W2892556724 citedByCount "292" @default.
- W2892556724 countsByYear W28925567242019 @default.
- W2892556724 countsByYear W28925567242020 @default.
- W2892556724 countsByYear W28925567242021 @default.
- W2892556724 countsByYear W28925567242022 @default.
- W2892556724 countsByYear W28925567242023 @default.
- W2892556724 crossrefType "journal-article" @default.
- W2892556724 hasAuthorship W2892556724A5001746807 @default.
- W2892556724 hasAuthorship W2892556724A5022626159 @default.
- W2892556724 hasAuthorship W2892556724A5089327837 @default.
- W2892556724 hasConcept C110875604 @default.
- W2892556724 hasConcept C124101348 @default.
- W2892556724 hasConcept C136764020 @default.
- W2892556724 hasConcept C27061796 @default.
- W2892556724 hasConcept C31258907 @default.
- W2892556724 hasConcept C35525427 @default.
- W2892556724 hasConcept C38652104 @default.
- W2892556724 hasConcept C41008148 @default.
- W2892556724 hasConcept C63969886 @default.
- W2892556724 hasConcept C81860439 @default.
- W2892556724 hasConceptScore W2892556724C110875604 @default.
- W2892556724 hasConceptScore W2892556724C124101348 @default.
- W2892556724 hasConceptScore W2892556724C136764020 @default.
- W2892556724 hasConceptScore W2892556724C27061796 @default.
- W2892556724 hasConceptScore W2892556724C31258907 @default.
- W2892556724 hasConceptScore W2892556724C35525427 @default.
- W2892556724 hasConceptScore W2892556724C38652104 @default.
- W2892556724 hasConceptScore W2892556724C41008148 @default.
- W2892556724 hasConceptScore W2892556724C63969886 @default.
- W2892556724 hasConceptScore W2892556724C81860439 @default.
- W2892556724 hasIssue "3" @default.
- W2892556724 hasLocation W28925567241 @default.
- W2892556724 hasOpenAccess W2892556724 @default.
- W2892556724 hasPrimaryLocation W28925567241 @default.
- W2892556724 hasRelatedWork W1510206344 @default.
- W2892556724 hasRelatedWork W2166166070 @default.
- W2892556724 hasRelatedWork W2362311214 @default.
- W2892556724 hasRelatedWork W2366221835 @default.
- W2892556724 hasRelatedWork W2378891550 @default.
- W2892556724 hasRelatedWork W2569131112 @default.
- W2892556724 hasRelatedWork W2618984630 @default.
- W2892556724 hasRelatedWork W3134154544 @default.
- W2892556724 hasRelatedWork W4283700121 @default.
- W2892556724 hasRelatedWork W4285157458 @default.
- W2892556724 hasVolume "6" @default.
- W2892556724 isParatext "false" @default.
- W2892556724 isRetracted "false" @default.
- W2892556724 magId "2892556724" @default.
- W2892556724 workType "article" @default.