Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892584940> ?p ?o ?g. }
- W2892584940 endingPage "126" @default.
- W2892584940 startingPage "117" @default.
- W2892584940 abstract "We address the medical image analysis issue of predicting the final lesion in stroke from early perfusion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images consists in a temporal deconvolution to improve the temporal signals associated with each voxel before performing prediction. We demonstrate here the value of exploiting directly the raw perfusion data by encoding the local environment of each voxel as a spatio-temporal texture, with an observation scale larger than the voxel. As a first illustration for this approach, the textures are characterized with local binary patterns and the classification is performed using a standard support vector machine (SVM). This simple machine learning classification scheme demonstrates results with 95% accuracy on average while working only raw perfusion data. We discuss the influence of the observation scale and evaluate the interest of using post-processed perfusion data with this approach." @default.
- W2892584940 created "2018-10-05" @default.
- W2892584940 creator A5003868113 @default.
- W2892584940 creator A5013390260 @default.
- W2892584940 creator A5049975927 @default.
- W2892584940 creator A5050083883 @default.
- W2892584940 creator A5052246884 @default.
- W2892584940 creator A5072554919 @default.
- W2892584940 creator A5073281377 @default.
- W2892584940 date "2018-12-01" @default.
- W2892584940 modified "2023-10-15" @default.
- W2892584940 title "Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke" @default.
- W2892584940 cites W1512888998 @default.
- W2892584940 cites W1571812451 @default.
- W2892584940 cites W1978478291 @default.
- W2892584940 cites W1985716609 @default.
- W2892584940 cites W2005119560 @default.
- W2892584940 cites W2022274350 @default.
- W2892584940 cites W2029927832 @default.
- W2892584940 cites W2037116606 @default.
- W2892584940 cites W2040107974 @default.
- W2892584940 cites W2053186076 @default.
- W2892584940 cites W2085920931 @default.
- W2892584940 cites W2089575713 @default.
- W2892584940 cites W2095401348 @default.
- W2892584940 cites W2097805840 @default.
- W2892584940 cites W2104299144 @default.
- W2892584940 cites W2118696780 @default.
- W2892584940 cites W2131081720 @default.
- W2892584940 cites W2139909035 @default.
- W2892584940 cites W2142472354 @default.
- W2892584940 cites W2144725892 @default.
- W2892584940 cites W2155477484 @default.
- W2892584940 cites W2157135059 @default.
- W2892584940 cites W2163352848 @default.
- W2892584940 cites W2277258071 @default.
- W2892584940 cites W2484736472 @default.
- W2892584940 cites W2558181346 @default.
- W2892584940 cites W2592062770 @default.
- W2892584940 cites W2609408396 @default.
- W2892584940 cites W2767776410 @default.
- W2892584940 cites W2787867590 @default.
- W2892584940 cites W2911964244 @default.
- W2892584940 cites W4210756097 @default.
- W2892584940 doi "https://doi.org/10.1016/j.media.2018.08.008" @default.
- W2892584940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30268970" @default.
- W2892584940 hasPublicationYear "2018" @default.
- W2892584940 type Work @default.
- W2892584940 sameAs 2892584940 @default.
- W2892584940 citedByCount "21" @default.
- W2892584940 countsByYear W28925849402019 @default.
- W2892584940 countsByYear W28925849402020 @default.
- W2892584940 countsByYear W28925849402021 @default.
- W2892584940 countsByYear W28925849402022 @default.
- W2892584940 countsByYear W28925849402023 @default.
- W2892584940 crossrefType "journal-article" @default.
- W2892584940 hasAuthorship W2892584940A5003868113 @default.
- W2892584940 hasAuthorship W2892584940A5013390260 @default.
- W2892584940 hasAuthorship W2892584940A5049975927 @default.
- W2892584940 hasAuthorship W2892584940A5050083883 @default.
- W2892584940 hasAuthorship W2892584940A5052246884 @default.
- W2892584940 hasAuthorship W2892584940A5072554919 @default.
- W2892584940 hasAuthorship W2892584940A5073281377 @default.
- W2892584940 hasConcept C11413529 @default.
- W2892584940 hasConcept C12267149 @default.
- W2892584940 hasConcept C125411270 @default.
- W2892584940 hasConcept C126838900 @default.
- W2892584940 hasConcept C132964779 @default.
- W2892584940 hasConcept C135691158 @default.
- W2892584940 hasConcept C146957229 @default.
- W2892584940 hasConcept C153180895 @default.
- W2892584940 hasConcept C154945302 @default.
- W2892584940 hasConcept C174576160 @default.
- W2892584940 hasConcept C199360897 @default.
- W2892584940 hasConcept C31972630 @default.
- W2892584940 hasConcept C41008148 @default.
- W2892584940 hasConcept C54170458 @default.
- W2892584940 hasConcept C66905080 @default.
- W2892584940 hasConcept C71924100 @default.
- W2892584940 hasConceptScore W2892584940C11413529 @default.
- W2892584940 hasConceptScore W2892584940C12267149 @default.
- W2892584940 hasConceptScore W2892584940C125411270 @default.
- W2892584940 hasConceptScore W2892584940C126838900 @default.
- W2892584940 hasConceptScore W2892584940C132964779 @default.
- W2892584940 hasConceptScore W2892584940C135691158 @default.
- W2892584940 hasConceptScore W2892584940C146957229 @default.
- W2892584940 hasConceptScore W2892584940C153180895 @default.
- W2892584940 hasConceptScore W2892584940C154945302 @default.
- W2892584940 hasConceptScore W2892584940C174576160 @default.
- W2892584940 hasConceptScore W2892584940C199360897 @default.
- W2892584940 hasConceptScore W2892584940C31972630 @default.
- W2892584940 hasConceptScore W2892584940C41008148 @default.
- W2892584940 hasConceptScore W2892584940C54170458 @default.
- W2892584940 hasConceptScore W2892584940C66905080 @default.
- W2892584940 hasConceptScore W2892584940C71924100 @default.
- W2892584940 hasFunder F4320322364 @default.
- W2892584940 hasLocation W28925849401 @default.
- W2892584940 hasLocation W28925849402 @default.