Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892592994> ?p ?o ?g. }
- W2892592994 endingPage "914" @default.
- W2892592994 startingPage "905" @default.
- W2892592994 abstract "Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding." @default.
- W2892592994 created "2018-10-05" @default.
- W2892592994 creator A5000694383 @default.
- W2892592994 creator A5014921416 @default.
- W2892592994 creator A5015390174 @default.
- W2892592994 creator A5024674943 @default.
- W2892592994 creator A5027026850 @default.
- W2892592994 creator A5045413165 @default.
- W2892592994 creator A5053865321 @default.
- W2892592994 creator A5072408501 @default.
- W2892592994 creator A5081790198 @default.
- W2892592994 creator A5086702927 @default.
- W2892592994 date "2018-12-01" @default.
- W2892592994 modified "2023-10-11" @default.
- W2892592994 title "Machine learning for real-time prediction of complications in critical care: a retrospective study" @default.
- W2892592994 cites W1485293642 @default.
- W2892592994 cites W1978732930 @default.
- W2892592994 cites W1993397663 @default.
- W2892592994 cites W1995887867 @default.
- W2892592994 cites W2026274122 @default.
- W2892592994 cites W2030264402 @default.
- W2892592994 cites W2033877969 @default.
- W2892592994 cites W2072492033 @default.
- W2892592994 cites W2083721602 @default.
- W2892592994 cites W2083963821 @default.
- W2892592994 cites W2096908543 @default.
- W2892592994 cites W2112525092 @default.
- W2892592994 cites W2159426339 @default.
- W2892592994 cites W2277786047 @default.
- W2892592994 cites W2396881363 @default.
- W2892592994 cites W2512368102 @default.
- W2892592994 cites W2525984666 @default.
- W2892592994 cites W2590678167 @default.
- W2892592994 cites W2603487522 @default.
- W2892592994 cites W2617110182 @default.
- W2892592994 cites W2727650337 @default.
- W2892592994 cites W2758348074 @default.
- W2892592994 cites W4247943214 @default.
- W2892592994 cites W4253468390 @default.
- W2892592994 cites W4293242440 @default.
- W2892592994 doi "https://doi.org/10.1016/s2213-2600(18)30300-x" @default.
- W2892592994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30274956" @default.
- W2892592994 hasPublicationYear "2018" @default.
- W2892592994 type Work @default.
- W2892592994 sameAs 2892592994 @default.
- W2892592994 citedByCount "207" @default.
- W2892592994 countsByYear W28925929942018 @default.
- W2892592994 countsByYear W28925929942019 @default.
- W2892592994 countsByYear W28925929942020 @default.
- W2892592994 countsByYear W28925929942021 @default.
- W2892592994 countsByYear W28925929942022 @default.
- W2892592994 countsByYear W28925929942023 @default.
- W2892592994 crossrefType "journal-article" @default.
- W2892592994 hasAuthorship W2892592994A5000694383 @default.
- W2892592994 hasAuthorship W2892592994A5014921416 @default.
- W2892592994 hasAuthorship W2892592994A5015390174 @default.
- W2892592994 hasAuthorship W2892592994A5024674943 @default.
- W2892592994 hasAuthorship W2892592994A5027026850 @default.
- W2892592994 hasAuthorship W2892592994A5045413165 @default.
- W2892592994 hasAuthorship W2892592994A5053865321 @default.
- W2892592994 hasAuthorship W2892592994A5072408501 @default.
- W2892592994 hasAuthorship W2892592994A5081790198 @default.
- W2892592994 hasAuthorship W2892592994A5086702927 @default.
- W2892592994 hasConcept C141071460 @default.
- W2892592994 hasConcept C160735492 @default.
- W2892592994 hasConcept C162324750 @default.
- W2892592994 hasConcept C167135981 @default.
- W2892592994 hasConcept C177713679 @default.
- W2892592994 hasConcept C194828623 @default.
- W2892592994 hasConcept C2779541074 @default.
- W2892592994 hasConcept C2781385661 @default.
- W2892592994 hasConcept C2987404301 @default.
- W2892592994 hasConcept C50522688 @default.
- W2892592994 hasConcept C71924100 @default.
- W2892592994 hasConceptScore W2892592994C141071460 @default.
- W2892592994 hasConceptScore W2892592994C160735492 @default.
- W2892592994 hasConceptScore W2892592994C162324750 @default.
- W2892592994 hasConceptScore W2892592994C167135981 @default.
- W2892592994 hasConceptScore W2892592994C177713679 @default.
- W2892592994 hasConceptScore W2892592994C194828623 @default.
- W2892592994 hasConceptScore W2892592994C2779541074 @default.
- W2892592994 hasConceptScore W2892592994C2781385661 @default.
- W2892592994 hasConceptScore W2892592994C2987404301 @default.
- W2892592994 hasConceptScore W2892592994C50522688 @default.
- W2892592994 hasConceptScore W2892592994C71924100 @default.
- W2892592994 hasFunder F4320320924 @default.
- W2892592994 hasFunder F4320321526 @default.
- W2892592994 hasFunder F4320329666 @default.
- W2892592994 hasIssue "12" @default.
- W2892592994 hasLocation W28925929941 @default.
- W2892592994 hasLocation W28925929942 @default.
- W2892592994 hasOpenAccess W2892592994 @default.
- W2892592994 hasPrimaryLocation W28925929941 @default.
- W2892592994 hasRelatedWork W2262615513 @default.
- W2892592994 hasRelatedWork W2329795235 @default.
- W2892592994 hasRelatedWork W2335545228 @default.
- W2892592994 hasRelatedWork W2512376941 @default.
- W2892592994 hasRelatedWork W2884048054 @default.