Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892611816> ?p ?o ?g. }
- W2892611816 endingPage "182" @default.
- W2892611816 startingPage "179" @default.
- W2892611816 abstract "Background: Alone, administrative data poorly identifies patients with palliative care needs. Objective: To identify patients with uncommon, yet devastating, illnesses using a combination of administrative data and natural language processing (NLP). Design/Setting: Retrospective cohort study using the electronic medical records of a healthcare network totaling over 2500 hospital beds. We sought to identify patient populations with two unique disease processes associated with a poor prognosis: pneumoperitoneum and leptomeningeal metastases from breast cancer. Measurements: Patients with pneumoperitoneum or leptomeningeal metastasis from breast cancer were identified through administrative codes and NLP. Results: Administrative codes alone resulted in identification of 6438 patients with possible pneumoperitoneum and 557 patients with possible leptomeningeal metastasis. Adding NLP to this analysis reduced the number of patients to 869 with pneumoperitoneum and 187 with leptomeningeal metastasis secondary to breast cancer. Administrative codes alone yielded a 13% positive predictive value (PPV) for pneumoperitoneum and 25% PPV for leptomeningeal metastasis. The combination of administrative codes and NLP achieved a PPV of 100%. The entire process was completed within hours. Conclusions: Adding NLP to the use of administrative codes allows for rapid identification of seriously ill patients with otherwise difficult to detect disease processes and eliminates costly, tedious, and time-intensive manual chart review. This method enables studies to evaluate the effectiveness of treatment, including palliative interventions, for unique populations of seriously ill patients who cannot be identified by administrative codes alone." @default.
- W2892611816 created "2018-10-05" @default.
- W2892611816 creator A5014360467 @default.
- W2892611816 creator A5021933999 @default.
- W2892611816 creator A5028800667 @default.
- W2892611816 creator A5039998258 @default.
- W2892611816 creator A5060448900 @default.
- W2892611816 creator A5082578200 @default.
- W2892611816 date "2019-02-01" @default.
- W2892611816 modified "2023-09-23" @default.
- W2892611816 title "Needle in a Haystack: Natural Language Processing to Identify Serious Illness" @default.
- W2892611816 cites W1982267666 @default.
- W2892611816 cites W2001240586 @default.
- W2892611816 cites W2010523223 @default.
- W2892611816 cites W2027540165 @default.
- W2892611816 cites W2033609349 @default.
- W2892611816 cites W2054353071 @default.
- W2892611816 cites W2057278659 @default.
- W2892611816 cites W2079431107 @default.
- W2892611816 cites W2082302018 @default.
- W2892611816 cites W2082481117 @default.
- W2892611816 cites W2091343120 @default.
- W2892611816 cites W2108517568 @default.
- W2892611816 cites W2139524347 @default.
- W2892611816 cites W2152561529 @default.
- W2892611816 cites W2488769594 @default.
- W2892611816 cites W2758000493 @default.
- W2892611816 cites W2767439308 @default.
- W2892611816 cites W2767862495 @default.
- W2892611816 cites W2786071443 @default.
- W2892611816 cites W2792473301 @default.
- W2892611816 doi "https://doi.org/10.1089/jpm.2018.0294" @default.
- W2892611816 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6909693" @default.
- W2892611816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30251922" @default.
- W2892611816 hasPublicationYear "2019" @default.
- W2892611816 type Work @default.
- W2892611816 sameAs 2892611816 @default.
- W2892611816 citedByCount "30" @default.
- W2892611816 countsByYear W28926118162019 @default.
- W2892611816 countsByYear W28926118162020 @default.
- W2892611816 countsByYear W28926118162021 @default.
- W2892611816 countsByYear W28926118162022 @default.
- W2892611816 countsByYear W28926118162023 @default.
- W2892611816 crossrefType "journal-article" @default.
- W2892611816 hasAuthorship W2892611816A5014360467 @default.
- W2892611816 hasAuthorship W2892611816A5021933999 @default.
- W2892611816 hasAuthorship W2892611816A5028800667 @default.
- W2892611816 hasAuthorship W2892611816A5039998258 @default.
- W2892611816 hasAuthorship W2892611816A5060448900 @default.
- W2892611816 hasAuthorship W2892611816A5082578200 @default.
- W2892611816 hasBestOaLocation W28926118162 @default.
- W2892611816 hasConcept C121608353 @default.
- W2892611816 hasConcept C126322002 @default.
- W2892611816 hasConcept C143998085 @default.
- W2892611816 hasConcept C159110408 @default.
- W2892611816 hasConcept C167135981 @default.
- W2892611816 hasConcept C177713679 @default.
- W2892611816 hasConcept C195910791 @default.
- W2892611816 hasConcept C27415008 @default.
- W2892611816 hasConcept C2779013556 @default.
- W2892611816 hasConcept C2908647359 @default.
- W2892611816 hasConcept C2994186709 @default.
- W2892611816 hasConcept C45827449 @default.
- W2892611816 hasConcept C530470458 @default.
- W2892611816 hasConcept C71924100 @default.
- W2892611816 hasConcept C99454951 @default.
- W2892611816 hasConceptScore W2892611816C121608353 @default.
- W2892611816 hasConceptScore W2892611816C126322002 @default.
- W2892611816 hasConceptScore W2892611816C143998085 @default.
- W2892611816 hasConceptScore W2892611816C159110408 @default.
- W2892611816 hasConceptScore W2892611816C167135981 @default.
- W2892611816 hasConceptScore W2892611816C177713679 @default.
- W2892611816 hasConceptScore W2892611816C195910791 @default.
- W2892611816 hasConceptScore W2892611816C27415008 @default.
- W2892611816 hasConceptScore W2892611816C2779013556 @default.
- W2892611816 hasConceptScore W2892611816C2908647359 @default.
- W2892611816 hasConceptScore W2892611816C2994186709 @default.
- W2892611816 hasConceptScore W2892611816C45827449 @default.
- W2892611816 hasConceptScore W2892611816C530470458 @default.
- W2892611816 hasConceptScore W2892611816C71924100 @default.
- W2892611816 hasConceptScore W2892611816C99454951 @default.
- W2892611816 hasIssue "2" @default.
- W2892611816 hasLocation W28926118161 @default.
- W2892611816 hasLocation W28926118162 @default.
- W2892611816 hasLocation W28926118163 @default.
- W2892611816 hasLocation W28926118164 @default.
- W2892611816 hasOpenAccess W2892611816 @default.
- W2892611816 hasPrimaryLocation W28926118161 @default.
- W2892611816 hasRelatedWork W1967894062 @default.
- W2892611816 hasRelatedWork W2332192242 @default.
- W2892611816 hasRelatedWork W2587869833 @default.
- W2892611816 hasRelatedWork W3033874287 @default.
- W2892611816 hasRelatedWork W3088410393 @default.
- W2892611816 hasRelatedWork W3160695097 @default.
- W2892611816 hasRelatedWork W3164743720 @default.
- W2892611816 hasRelatedWork W3210868775 @default.
- W2892611816 hasRelatedWork W377899687 @default.
- W2892611816 hasRelatedWork W4368359645 @default.