Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892624834> ?p ?o ?g. }
- W2892624834 endingPage "410" @default.
- W2892624834 startingPage "400" @default.
- W2892624834 abstract "Abstract Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates." @default.
- W2892624834 created "2018-10-05" @default.
- W2892624834 creator A5012732769 @default.
- W2892624834 creator A5018114061 @default.
- W2892624834 creator A5026127370 @default.
- W2892624834 creator A5052865881 @default.
- W2892624834 creator A5057281823 @default.
- W2892624834 creator A5057321096 @default.
- W2892624834 creator A5069911612 @default.
- W2892624834 creator A5071289544 @default.
- W2892624834 creator A5077425341 @default.
- W2892624834 date "2018-11-01" @default.
- W2892624834 modified "2023-10-18" @default.
- W2892624834 title "A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer" @default.
- W2892624834 cites W1970220400 @default.
- W2892624834 cites W1972092823 @default.
- W2892624834 cites W1976410159 @default.
- W2892624834 cites W1984083988 @default.
- W2892624834 cites W1994975670 @default.
- W2892624834 cites W1995109328 @default.
- W2892624834 cites W1998767280 @default.
- W2892624834 cites W2003004462 @default.
- W2892624834 cites W2003804198 @default.
- W2892624834 cites W2017555282 @default.
- W2892624834 cites W2029258345 @default.
- W2892624834 cites W2029974442 @default.
- W2892624834 cites W2041371820 @default.
- W2892624834 cites W2048928083 @default.
- W2892624834 cites W2051060685 @default.
- W2892624834 cites W2055217093 @default.
- W2892624834 cites W2056191667 @default.
- W2892624834 cites W2066122301 @default.
- W2892624834 cites W2068523487 @default.
- W2892624834 cites W2074444609 @default.
- W2892624834 cites W2079479546 @default.
- W2892624834 cites W2118604661 @default.
- W2892624834 cites W2118921617 @default.
- W2892624834 cites W2119179880 @default.
- W2892624834 cites W2120517872 @default.
- W2892624834 cites W2133003945 @default.
- W2892624834 cites W2140138161 @default.
- W2892624834 cites W2141343012 @default.
- W2892624834 cites W2147871842 @default.
- W2892624834 cites W2153328324 @default.
- W2892624834 cites W2154888692 @default.
- W2892624834 cites W2158840489 @default.
- W2892624834 cites W2159344893 @default.
- W2892624834 cites W2161557312 @default.
- W2892624834 cites W2169631286 @default.
- W2892624834 cites W2170207977 @default.
- W2892624834 cites W2339826024 @default.
- W2892624834 cites W2475126267 @default.
- W2892624834 cites W2562617178 @default.
- W2892624834 cites W2692909408 @default.
- W2892624834 cites W2728256789 @default.
- W2892624834 cites W2790601347 @default.
- W2892624834 cites W4230189804 @default.
- W2892624834 cites W4234437920 @default.
- W2892624834 doi "https://doi.org/10.1016/j.compag.2018.07.027" @default.
- W2892624834 hasPublicationYear "2018" @default.
- W2892624834 type Work @default.
- W2892624834 sameAs 2892624834 @default.
- W2892624834 citedByCount "7" @default.
- W2892624834 countsByYear W28926248342020 @default.
- W2892624834 countsByYear W28926248342021 @default.
- W2892624834 countsByYear W28926248342022 @default.
- W2892624834 crossrefType "journal-article" @default.
- W2892624834 hasAuthorship W2892624834A5012732769 @default.
- W2892624834 hasAuthorship W2892624834A5018114061 @default.
- W2892624834 hasAuthorship W2892624834A5026127370 @default.
- W2892624834 hasAuthorship W2892624834A5052865881 @default.
- W2892624834 hasAuthorship W2892624834A5057281823 @default.
- W2892624834 hasAuthorship W2892624834A5057321096 @default.
- W2892624834 hasAuthorship W2892624834A5069911612 @default.
- W2892624834 hasAuthorship W2892624834A5071289544 @default.
- W2892624834 hasAuthorship W2892624834A5077425341 @default.
- W2892624834 hasConcept C121332964 @default.
- W2892624834 hasConcept C173608175 @default.
- W2892624834 hasConcept C2778755073 @default.
- W2892624834 hasConcept C39432304 @default.
- W2892624834 hasConcept C41008148 @default.
- W2892624834 hasConcept C62520636 @default.
- W2892624834 hasConcept C83283714 @default.
- W2892624834 hasConceptScore W2892624834C121332964 @default.
- W2892624834 hasConceptScore W2892624834C173608175 @default.
- W2892624834 hasConceptScore W2892624834C2778755073 @default.
- W2892624834 hasConceptScore W2892624834C39432304 @default.
- W2892624834 hasConceptScore W2892624834C41008148 @default.
- W2892624834 hasConceptScore W2892624834C62520636 @default.
- W2892624834 hasConceptScore W2892624834C83283714 @default.
- W2892624834 hasLocation W28926248341 @default.
- W2892624834 hasOpenAccess W2892624834 @default.
- W2892624834 hasPrimaryLocation W28926248341 @default.
- W2892624834 hasRelatedWork W148823471 @default.
- W2892624834 hasRelatedWork W1497335089 @default.
- W2892624834 hasRelatedWork W1500982531 @default.
- W2892624834 hasRelatedWork W1505993080 @default.
- W2892624834 hasRelatedWork W1547595128 @default.