Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892625411> ?p ?o ?g. }
- W2892625411 abstract "Abstract Modeling shale gas relative permeability, krg, has numerous practical applictaions, particularly in gas exploration and production in unconventional reservoirs. krg is a key petrophysical quantity for accurately determining recovery factor and production rate. In the literature, a few theoretical models developed to estimate krg are based upon either a bundle of capillary tubes conceptual approach or a combination of universal scaling laws e.g., from percolation theory. The former is a severely distorted idealization of porous rocks, while the latter is, generally speaking, valid near the percolation threshold and/or in rocks with narrow pore-throat size distribution. Although the effective medium approximation has been successfully applied to model wetting- and nonwetting-phase relative permeabilities in conventional rocks, to the best of the author's knowledge, it has never been used to estimate krg in unconventional reservoirs. Therefore, the main objective of this study is to develop a theoretical model based on the effective-medium approximation, an upscaling technique from statistical physics, to estimate shale gas relative permeability from pore-throat size distribution. In this study, we presumed that pore-throat sizes conform to a truncated log-normal probability density function. We further presumed that gas flow under variably-saturated conditions is mainly controlled by two mechanisms contributing in parallel: (1) molecular flow and (2) hydraulic flow. The total conductance of a single pore (gt), therefore, was equal to the summation of the molecular flow conductance, gm, and the hydraulic flow conductance, gh (i.e., gt = gm + gh). We then invoked the governing equation from the effective-medium approximation to determine effective conductances and, accordingly, gas relative permeabilities at various saturations. Results showed that krg varies as the log-normal distribution parameters standard deviation (σ) and geometric mean pore radius (rm) alter. By comparison with two- and three-dimensional pore-network model simulations, we found that the proposed model estimated gas relative permeability accurately, particularly in three dimensions. We also estimated krg from the pore-throat size distribution derived from measured mercury intrusion capillary pressure (MICP) curve for three experiments (i.e., Eagle Ford, Pierre, and Barnnet) and found that krg of Barnnet was remarkably less than that of Pierre and Eagle Ford." @default.
- W2892625411 created "2018-10-05" @default.
- W2892625411 creator A5045145819 @default.
- W2892625411 date "2018-09-24" @default.
- W2892625411 modified "2023-10-14" @default.
- W2892625411 title "Estimating Gas Relative Permeability of Shales from Pore Size Distribution" @default.
- W2892625411 cites W1480219468 @default.
- W2892625411 cites W1515408318 @default.
- W2892625411 cites W1966799339 @default.
- W2892625411 cites W1973900511 @default.
- W2892625411 cites W1985261292 @default.
- W2892625411 cites W1989548800 @default.
- W2892625411 cites W1992893263 @default.
- W2892625411 cites W1993288443 @default.
- W2892625411 cites W1996613237 @default.
- W2892625411 cites W2007283787 @default.
- W2892625411 cites W2007315592 @default.
- W2892625411 cites W2009951639 @default.
- W2892625411 cites W2025922680 @default.
- W2892625411 cites W2033544477 @default.
- W2892625411 cites W2040505957 @default.
- W2892625411 cites W2049263320 @default.
- W2892625411 cites W2073505460 @default.
- W2892625411 cites W2078522397 @default.
- W2892625411 cites W2083091537 @default.
- W2892625411 cites W2093445429 @default.
- W2892625411 cites W2104995668 @default.
- W2892625411 cites W2117079013 @default.
- W2892625411 cites W2152133194 @default.
- W2892625411 cites W2179947482 @default.
- W2892625411 cites W2279788781 @default.
- W2892625411 cites W2285902904 @default.
- W2892625411 cites W2331128217 @default.
- W2892625411 cites W2531455516 @default.
- W2892625411 cites W2735425752 @default.
- W2892625411 cites W2754631171 @default.
- W2892625411 cites W2760874495 @default.
- W2892625411 cites W2783956838 @default.
- W2892625411 cites W2785781207 @default.
- W2892625411 cites W2795139205 @default.
- W2892625411 cites W2803843307 @default.
- W2892625411 cites W2804324395 @default.
- W2892625411 cites W2810702096 @default.
- W2892625411 cites W3092713310 @default.
- W2892625411 cites W4230605449 @default.
- W2892625411 cites W4246382791 @default.
- W2892625411 doi "https://doi.org/10.2118/191878-ms" @default.
- W2892625411 hasPublicationYear "2018" @default.
- W2892625411 type Work @default.
- W2892625411 sameAs 2892625411 @default.
- W2892625411 citedByCount "3" @default.
- W2892625411 countsByYear W28926254112019 @default.
- W2892625411 countsByYear W28926254112020 @default.
- W2892625411 crossrefType "proceedings-article" @default.
- W2892625411 hasAuthorship W2892625411A5045145819 @default.
- W2892625411 hasConcept C105569014 @default.
- W2892625411 hasConcept C113378726 @default.
- W2892625411 hasConcept C11557063 @default.
- W2892625411 hasConcept C120882062 @default.
- W2892625411 hasConcept C121332964 @default.
- W2892625411 hasConcept C127313418 @default.
- W2892625411 hasConcept C131540310 @default.
- W2892625411 hasConcept C147789679 @default.
- W2892625411 hasConcept C151730666 @default.
- W2892625411 hasConcept C153127940 @default.
- W2892625411 hasConcept C159390177 @default.
- W2892625411 hasConcept C159750122 @default.
- W2892625411 hasConcept C159985019 @default.
- W2892625411 hasConcept C169760540 @default.
- W2892625411 hasConcept C185592680 @default.
- W2892625411 hasConcept C187320778 @default.
- W2892625411 hasConcept C192562407 @default.
- W2892625411 hasConcept C2524010 @default.
- W2892625411 hasConcept C2778134712 @default.
- W2892625411 hasConcept C2780457167 @default.
- W2892625411 hasConcept C33923547 @default.
- W2892625411 hasConcept C41625074 @default.
- W2892625411 hasConcept C46293882 @default.
- W2892625411 hasConcept C55493867 @default.
- W2892625411 hasConcept C57879066 @default.
- W2892625411 hasConcept C63184880 @default.
- W2892625411 hasConcept C6648577 @default.
- W2892625411 hasConcept C86803240 @default.
- W2892625411 hasConcept C97355855 @default.
- W2892625411 hasConcept C99844830 @default.
- W2892625411 hasConceptScore W2892625411C105569014 @default.
- W2892625411 hasConceptScore W2892625411C113378726 @default.
- W2892625411 hasConceptScore W2892625411C11557063 @default.
- W2892625411 hasConceptScore W2892625411C120882062 @default.
- W2892625411 hasConceptScore W2892625411C121332964 @default.
- W2892625411 hasConceptScore W2892625411C127313418 @default.
- W2892625411 hasConceptScore W2892625411C131540310 @default.
- W2892625411 hasConceptScore W2892625411C147789679 @default.
- W2892625411 hasConceptScore W2892625411C151730666 @default.
- W2892625411 hasConceptScore W2892625411C153127940 @default.
- W2892625411 hasConceptScore W2892625411C159390177 @default.
- W2892625411 hasConceptScore W2892625411C159750122 @default.
- W2892625411 hasConceptScore W2892625411C159985019 @default.
- W2892625411 hasConceptScore W2892625411C169760540 @default.
- W2892625411 hasConceptScore W2892625411C185592680 @default.