Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892632889> ?p ?o ?g. }
- W2892632889 endingPage "1513" @default.
- W2892632889 startingPage "1502" @default.
- W2892632889 abstract "Establishing causal relations between random variables from observational data is perhaps the most important challenge in today's science. In remote sensing and geosciences, this is of special relevance to better understand the earth's system and the complex interactions between the governing processes. In this paper, we focus on an observational causal inference, and thus, we try to estimate the correct direction of causation using a finite set of empirical data. In addition, we focus on the more complex bivariate scenario that requires strong assumptions and no conditional independence tests can be used. In particular, we explore the framework of (nondeterministic) additive noise models, which relies on the principle of independence between the cause and the generating mechanism. A practical algorithmic instantiation of such principle only requires: 1) two regression models in the forward and backward directions and 2) the estimation of statistical independence between the obtained residuals and the observations. The direction leading to more independent residuals is decided to be the cause. We instead propose a criterion that uses the sensitivity (derivative) of the dependence estimator, the sensitivity criterion allows to identify samples most affecting the dependence measure, and hence, the criterion is robust to spurious detections. We illustrate the performance in a collection of 28 geoscience causal inference problems, a database of radiative transfer models simulations and machine learning emulators in vegetation parameter modeling involving 182 problems, and assessing the impact of different regression models in a carbon cycle problem. The criterion achieves the state-of-the-art detection rates in all cases, and it is generally robust to noise sources and distortions. The presented approach confirms the validity in observational bivariate problems in the earth sciences." @default.
- W2892632889 created "2018-10-05" @default.
- W2892632889 creator A5012161331 @default.
- W2892632889 creator A5039052506 @default.
- W2892632889 date "2019-03-01" @default.
- W2892632889 modified "2023-09-25" @default.
- W2892632889 title "Causal Inference in Geoscience and Remote Sensing From Observational Data" @default.
- W2892632889 cites W1504657038 @default.
- W2892632889 cites W1524326598 @default.
- W2892632889 cites W1598575158 @default.
- W2892632889 cites W1638081485 @default.
- W2892632889 cites W1667828214 @default.
- W2892632889 cites W1761441485 @default.
- W2892632889 cites W1975049191 @default.
- W2892632889 cites W2024649846 @default.
- W2892632889 cites W2035248036 @default.
- W2892632889 cites W2062813531 @default.
- W2892632889 cites W2065559553 @default.
- W2892632889 cites W2071312622 @default.
- W2892632889 cites W2082665707 @default.
- W2892632889 cites W2086331397 @default.
- W2892632889 cites W2086372367 @default.
- W2892632889 cites W2092369570 @default.
- W2892632889 cites W2103564202 @default.
- W2892632889 cites W2121033220 @default.
- W2892632889 cites W2121937771 @default.
- W2892632889 cites W2127635108 @default.
- W2892632889 cites W2143891888 @default.
- W2892632889 cites W2147881172 @default.
- W2892632889 cites W2167257136 @default.
- W2892632889 cites W2178225550 @default.
- W2892632889 cites W2189828630 @default.
- W2892632889 cites W2255002787 @default.
- W2892632889 cites W2288320689 @default.
- W2892632889 cites W2297288734 @default.
- W2892632889 cites W2413379912 @default.
- W2892632889 cites W2548573026 @default.
- W2892632889 cites W2550227402 @default.
- W2892632889 cites W2772053330 @default.
- W2892632889 cites W4236617288 @default.
- W2892632889 cites W43153312 @default.
- W2892632889 cites W59495185 @default.
- W2892632889 doi "https://doi.org/10.1109/tgrs.2018.2867002" @default.
- W2892632889 hasPublicationYear "2019" @default.
- W2892632889 type Work @default.
- W2892632889 sameAs 2892632889 @default.
- W2892632889 citedByCount "11" @default.
- W2892632889 countsByYear W28926328892020 @default.
- W2892632889 countsByYear W28926328892021 @default.
- W2892632889 countsByYear W28926328892022 @default.
- W2892632889 countsByYear W28926328892023 @default.
- W2892632889 crossrefType "journal-article" @default.
- W2892632889 hasAuthorship W2892632889A5012161331 @default.
- W2892632889 hasAuthorship W2892632889A5039052506 @default.
- W2892632889 hasBestOaLocation W28926328892 @default.
- W2892632889 hasConcept C105795698 @default.
- W2892632889 hasConcept C11413529 @default.
- W2892632889 hasConcept C119857082 @default.
- W2892632889 hasConcept C124101348 @default.
- W2892632889 hasConcept C149782125 @default.
- W2892632889 hasConcept C154945302 @default.
- W2892632889 hasConcept C158600405 @default.
- W2892632889 hasConcept C185429906 @default.
- W2892632889 hasConcept C2776214188 @default.
- W2892632889 hasConcept C33923547 @default.
- W2892632889 hasConcept C41008148 @default.
- W2892632889 hasConcept C79772020 @default.
- W2892632889 hasConcept C97256817 @default.
- W2892632889 hasConceptScore W2892632889C105795698 @default.
- W2892632889 hasConceptScore W2892632889C11413529 @default.
- W2892632889 hasConceptScore W2892632889C119857082 @default.
- W2892632889 hasConceptScore W2892632889C124101348 @default.
- W2892632889 hasConceptScore W2892632889C149782125 @default.
- W2892632889 hasConceptScore W2892632889C154945302 @default.
- W2892632889 hasConceptScore W2892632889C158600405 @default.
- W2892632889 hasConceptScore W2892632889C185429906 @default.
- W2892632889 hasConceptScore W2892632889C2776214188 @default.
- W2892632889 hasConceptScore W2892632889C33923547 @default.
- W2892632889 hasConceptScore W2892632889C41008148 @default.
- W2892632889 hasConceptScore W2892632889C79772020 @default.
- W2892632889 hasConceptScore W2892632889C97256817 @default.
- W2892632889 hasFunder F4320321679 @default.
- W2892632889 hasIssue "3" @default.
- W2892632889 hasLocation W28926328891 @default.
- W2892632889 hasLocation W28926328892 @default.
- W2892632889 hasOpenAccess W2892632889 @default.
- W2892632889 hasPrimaryLocation W28926328891 @default.
- W2892632889 hasRelatedWork W1574469125 @default.
- W2892632889 hasRelatedWork W1660493506 @default.
- W2892632889 hasRelatedWork W2510443216 @default.
- W2892632889 hasRelatedWork W2949919985 @default.
- W2892632889 hasRelatedWork W2957103736 @default.
- W2892632889 hasRelatedWork W3149538312 @default.
- W2892632889 hasRelatedWork W4281726379 @default.
- W2892632889 hasRelatedWork W4294753120 @default.
- W2892632889 hasRelatedWork W4321440760 @default.
- W2892632889 hasRelatedWork W3123288520 @default.
- W2892632889 hasVolume "57" @default.