Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892643690> ?p ?o ?g. }
- W2892643690 endingPage "5924" @default.
- W2892643690 startingPage "5909" @default.
- W2892643690 abstract "Suppression of testosterone production by nanoparticulate TiO2 is associated with ERK1/2/PKA/PKC signaling pathways in rat primary cultured Leydig cells Lingjuan Li,1 Xu Mu,1 Lingqun Ye,1 Yuguan Ze,1 Fashui Hong2–5 1Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou 215123, China; 2Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China; 3Jiangsu Key Laboratory for Food Safety and Nutritional Function Evaluation, Huaiyin Normal University, Huai’an 223300, China; 4Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China; 5School of Life Sciences, Huaiyin Normal University, Huai’an 223300, China Background: Nanoparticulate titanium dioxide (nano-TiO2) enters the body through various routes and causes organ damage. Exposure to nano-TiO2 is reported to cause testicular injury in mice or rats and decrease testosterone synthesis, sperm number, and motility. Importantly, nano-TiO2 suppresses testosterone production by Leydig cells (LCs) and impairs the reproductive capacity of animals. Methods: In an attempt to establish the molecular mechanisms underlying the inhibitory effect of nano-TiO2 on testosterone synthesis, primary cultured rat LCs were exposed to varying concentrations of nano-TiO2 (0, 10, 20, and 40 µg/mL) for 24 hours, and alterations in cell viability, cell injury, testosterone production, testosterone-related factors (StAR, 3βHSD, P450scc, SR-BI, and DAX1), and signaling molecules (ERK1/2, PKA, and PKC) were investigated. Results: The data show that nano-TiO2 crosses the membrane into the cytoplasm or nucleus, triggering cellular vacuolization and nuclear condensation. LC viability decreased in a time-dependent manner at the same nano-TiO2 concentration, nano-TiO2 treatment (10, 20, and 40 µg/mL) decreased MMP (36.13%, 45.26%, and 79.63%), testosterone levels (11.40% and 44.93%), StAR (14.7%, 44.11%, and 72.05%), 3βHSD (26.56%, 50%, and 79.69%), pERK1/2 (27.83%, 63.61%, and 78.89%), PKA (47.26%, 70.54%, and 85.61%), PKC (30%, 50%, and 71%), SR-BI (16.41%, 41.79%, and 67.16%), and P450scc (39.41%, 55.26%, and 86.84%), and upregulated DAX1 (1.31-, 1.63-, and 3.18-fold) in primary cultured rat LCs. Conclusion: Our collective findings indicated that nano-TiO2-mediated suppression of testosterone in LCs was associated with regulation of ERK1/2–PKA–PKC signaling pathways. Keywords: nanoparticulate titanium dioxide, primary cultured rat Leydig cells, mitochondrial injury, testosterone, ERK1/2–PKA–PKC signaling pathways" @default.
- W2892643690 created "2018-10-05" @default.
- W2892643690 creator A5032117360 @default.
- W2892643690 creator A5039970541 @default.
- W2892643690 creator A5077381613 @default.
- W2892643690 creator A5078886899 @default.
- W2892643690 creator A5087333929 @default.
- W2892643690 date "2018-09-01" @default.
- W2892643690 modified "2023-09-25" @default.
- W2892643690 title "Suppression of testosterone production by nanoparticulate TiO<sub>2</sub> is associated with ERK1/2-PKA-PKC signaling pathways in rat primary cultured Leydig cells" @default.
- W2892643690 cites W102200901 @default.
- W2892643690 cites W1054473502 @default.
- W2892643690 cites W1475381583 @default.
- W2892643690 cites W1506235302 @default.
- W2892643690 cites W1549886276 @default.
- W2892643690 cites W1660177314 @default.
- W2892643690 cites W1709116759 @default.
- W2892643690 cites W1770425443 @default.
- W2892643690 cites W1964748278 @default.
- W2892643690 cites W1967842367 @default.
- W2892643690 cites W1979907880 @default.
- W2892643690 cites W1982378312 @default.
- W2892643690 cites W1984144440 @default.
- W2892643690 cites W1985937024 @default.
- W2892643690 cites W1995559893 @default.
- W2892643690 cites W1998454517 @default.
- W2892643690 cites W1999343359 @default.
- W2892643690 cites W2002003950 @default.
- W2892643690 cites W2004805723 @default.
- W2892643690 cites W2008157182 @default.
- W2892643690 cites W2008939735 @default.
- W2892643690 cites W2011929090 @default.
- W2892643690 cites W2026359214 @default.
- W2892643690 cites W2026755394 @default.
- W2892643690 cites W2033041008 @default.
- W2892643690 cites W2064727565 @default.
- W2892643690 cites W2077003972 @default.
- W2892643690 cites W2081491101 @default.
- W2892643690 cites W2103241791 @default.
- W2892643690 cites W2128296469 @default.
- W2892643690 cites W2132416667 @default.
- W2892643690 cites W2134876608 @default.
- W2892643690 cites W2135241310 @default.
- W2892643690 cites W2137516638 @default.
- W2892643690 cites W2158094566 @default.
- W2892643690 cites W2165840006 @default.
- W2892643690 cites W2198299250 @default.
- W2892643690 cites W2415476785 @default.
- W2892643690 cites W2440489912 @default.
- W2892643690 cites W2523080582 @default.
- W2892643690 cites W2549941859 @default.
- W2892643690 cites W2554728928 @default.
- W2892643690 cites W2560989423 @default.
- W2892643690 cites W2570459373 @default.
- W2892643690 cites W2586240357 @default.
- W2892643690 cites W2602456762 @default.
- W2892643690 cites W2605155547 @default.
- W2892643690 cites W2749260832 @default.
- W2892643690 cites W2799450501 @default.
- W2892643690 cites W79563710 @default.
- W2892643690 doi "https://doi.org/10.2147/ijn.s175608" @default.
- W2892643690 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6167999" @default.
- W2892643690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30319256" @default.
- W2892643690 hasPublicationYear "2018" @default.
- W2892643690 type Work @default.
- W2892643690 sameAs 2892643690 @default.
- W2892643690 citedByCount "22" @default.
- W2892643690 countsByYear W28926436902018 @default.
- W2892643690 countsByYear W28926436902019 @default.
- W2892643690 countsByYear W28926436902020 @default.
- W2892643690 countsByYear W28926436902021 @default.
- W2892643690 countsByYear W28926436902022 @default.
- W2892643690 countsByYear W28926436902023 @default.
- W2892643690 crossrefType "journal-article" @default.
- W2892643690 hasAuthorship W2892643690A5032117360 @default.
- W2892643690 hasAuthorship W2892643690A5039970541 @default.
- W2892643690 hasAuthorship W2892643690A5077381613 @default.
- W2892643690 hasAuthorship W2892643690A5078886899 @default.
- W2892643690 hasAuthorship W2892643690A5087333929 @default.
- W2892643690 hasBestOaLocation W28926436901 @default.
- W2892643690 hasConcept C126322002 @default.
- W2892643690 hasConcept C134018914 @default.
- W2892643690 hasConcept C185592680 @default.
- W2892643690 hasConcept C195794163 @default.
- W2892643690 hasConcept C2777736315 @default.
- W2892643690 hasConcept C2778575703 @default.
- W2892643690 hasConcept C2779279991 @default.
- W2892643690 hasConcept C58207958 @default.
- W2892643690 hasConcept C62478195 @default.
- W2892643690 hasConcept C71315377 @default.
- W2892643690 hasConcept C71924100 @default.
- W2892643690 hasConcept C86803240 @default.
- W2892643690 hasConcept C95444343 @default.
- W2892643690 hasConceptScore W2892643690C126322002 @default.
- W2892643690 hasConceptScore W2892643690C134018914 @default.
- W2892643690 hasConceptScore W2892643690C185592680 @default.
- W2892643690 hasConceptScore W2892643690C195794163 @default.
- W2892643690 hasConceptScore W2892643690C2777736315 @default.