Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892651726> ?p ?o ?g. }
- W2892651726 endingPage "1564" @default.
- W2892651726 startingPage "1555" @default.
- W2892651726 abstract "Abstract Current paper proposes a model to account for different pore sizes in shale and its influence on hydrocarbon distribution. Such a partitioning scheme provides a multiporosity-like approach where the fluid composition in different pore sizes varies due to size filtration and sieving effect. The proposed approach opens up new ways to interpret anomalous gas-oil ratios in shale. Low permeability shales are believed to form a considerable portion of the recoverable reserves in North America. Such an enhanced potential comes with new challenges and technical difficulties. Recent advances in high precision analytical tools have revealed that pore size distribution in shale reservoirs spans a wide range. Molecules in pores with different sizes may exhibit significantly different thermodynamics behavior. Rock fluid interactions and space hindrance effects play an important role when pore sizes become close to species’ molecular dimeters. The tight porous media in such situations can act as a semi-permeable membrane that selectively filters molecules based on their sizes. This effect can result in a composition difference between pores with large and small diameters in shale reservoirs (size filtration or sieving effect), with small pores mostly filled with smaller hydrocarbon molecules and large molecules residing in larger pores. To account for such a diverse behavior, this paper proposes a pore partitioning approach, which divides shale media into two different porosity systems: large and small pores. We use a modified version of the Peng-Robinson equation of state to model the equilibrium hydrocarbon distribution in large and small pores. Our thermodynamics calculations show that as pore dimeter decreases, the concentration of larger hydrocarbon molecules in those pores decreases because of size filtration. Considering the small pore size in shale and rock-fluid interactions, our current model was used to analyze the potential of different injection gases as improve recovery agents. Our results show that a higher pore wall affinity for CO2 (compared to CH4 and N2) helps it reach deeper in small shale pores, making it a perfect fit for improve oil recovery from extremely tight media. Results show that our model provides a powerful tool to evaluate the complicated rock-fluid dynamics in liquid shales." @default.
- W2892651726 created "2018-10-05" @default.
- W2892651726 creator A5003688630 @default.
- W2892651726 creator A5060990046 @default.
- W2892651726 creator A5088312067 @default.
- W2892651726 date "2019-01-01" @default.
- W2892651726 modified "2023-10-06" @default.
- W2892651726 title "Effect of pore sizes on composition distribution and enhance recovery from liquid shale—Molecular sieving in low permeability reservoirs" @default.
- W2892651726 cites W1966558535 @default.
- W2892651726 cites W1975407242 @default.
- W2892651726 cites W1978706653 @default.
- W2892651726 cites W1989901395 @default.
- W2892651726 cites W1993858976 @default.
- W2892651726 cites W1997467458 @default.
- W2892651726 cites W2001656716 @default.
- W2892651726 cites W2003422516 @default.
- W2892651726 cites W2006230642 @default.
- W2892651726 cites W2007349442 @default.
- W2892651726 cites W2007954148 @default.
- W2892651726 cites W2012893865 @default.
- W2892651726 cites W2018434255 @default.
- W2892651726 cites W2026944027 @default.
- W2892651726 cites W2028318117 @default.
- W2892651726 cites W2030386542 @default.
- W2892651726 cites W2030887162 @default.
- W2892651726 cites W2034111148 @default.
- W2892651726 cites W2037041665 @default.
- W2892651726 cites W2044092742 @default.
- W2892651726 cites W2047372589 @default.
- W2892651726 cites W2049946484 @default.
- W2892651726 cites W2053718838 @default.
- W2892651726 cites W2057443364 @default.
- W2892651726 cites W2061174684 @default.
- W2892651726 cites W2062820578 @default.
- W2892651726 cites W2070131416 @default.
- W2892651726 cites W2071039512 @default.
- W2892651726 cites W2071771565 @default.
- W2892651726 cites W2073601842 @default.
- W2892651726 cites W2075687350 @default.
- W2892651726 cites W2077087073 @default.
- W2892651726 cites W2079792826 @default.
- W2892651726 cites W2085031630 @default.
- W2892651726 cites W2086361003 @default.
- W2892651726 cites W2092831773 @default.
- W2892651726 cites W2093870686 @default.
- W2892651726 cites W2100121405 @default.
- W2892651726 cites W2104076412 @default.
- W2892651726 cites W2109486844 @default.
- W2892651726 cites W2129288307 @default.
- W2892651726 cites W2161470016 @default.
- W2892651726 cites W2257941500 @default.
- W2892651726 cites W2265406617 @default.
- W2892651726 cites W2296388732 @default.
- W2892651726 cites W2341450043 @default.
- W2892651726 cites W2411959037 @default.
- W2892651726 cites W2479406328 @default.
- W2892651726 cites W2521163433 @default.
- W2892651726 cites W2586086879 @default.
- W2892651726 cites W2739151572 @default.
- W2892651726 cites W2744211947 @default.
- W2892651726 cites W2762255386 @default.
- W2892651726 cites W329859771 @default.
- W2892651726 cites W362812737 @default.
- W2892651726 cites W4240694456 @default.
- W2892651726 doi "https://doi.org/10.1016/j.fuel.2018.08.063" @default.
- W2892651726 hasPublicationYear "2019" @default.
- W2892651726 type Work @default.
- W2892651726 sameAs 2892651726 @default.
- W2892651726 citedByCount "26" @default.
- W2892651726 countsByYear W28926517262019 @default.
- W2892651726 countsByYear W28926517262020 @default.
- W2892651726 countsByYear W28926517262021 @default.
- W2892651726 countsByYear W28926517262022 @default.
- W2892651726 countsByYear W28926517262023 @default.
- W2892651726 crossrefType "journal-article" @default.
- W2892651726 hasAuthorship W2892651726A5003688630 @default.
- W2892651726 hasAuthorship W2892651726A5060990046 @default.
- W2892651726 hasAuthorship W2892651726A5088312067 @default.
- W2892651726 hasConcept C120882062 @default.
- W2892651726 hasConcept C127313418 @default.
- W2892651726 hasConcept C127413603 @default.
- W2892651726 hasConcept C151730666 @default.
- W2892651726 hasConcept C153127940 @default.
- W2892651726 hasConcept C185592680 @default.
- W2892651726 hasConcept C192562407 @default.
- W2892651726 hasConcept C199289684 @default.
- W2892651726 hasConcept C2779681308 @default.
- W2892651726 hasConcept C41625074 @default.
- W2892651726 hasConcept C42360764 @default.
- W2892651726 hasConcept C55493867 @default.
- W2892651726 hasConcept C78762247 @default.
- W2892651726 hasConceptScore W2892651726C120882062 @default.
- W2892651726 hasConceptScore W2892651726C127313418 @default.
- W2892651726 hasConceptScore W2892651726C127413603 @default.
- W2892651726 hasConceptScore W2892651726C151730666 @default.
- W2892651726 hasConceptScore W2892651726C153127940 @default.
- W2892651726 hasConceptScore W2892651726C185592680 @default.
- W2892651726 hasConceptScore W2892651726C192562407 @default.