Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892669811> ?p ?o ?g. }
- W2892669811 endingPage "266" @default.
- W2892669811 startingPage "243" @default.
- W2892669811 abstract "Cluster analysis has a wide application in many areas, including pattern recognition, information retrieval, and image processing. In most real-world clustering problems, the number of clusters must be predetermined. Automatic clustering is a promising solution for this challenge which automatically determines the number and structure of clusters in data. In recent years, the evolutionary algorithm due to their search mechanisms has been popular in solving automatic clustering problems. Imperialist Competitive Algorithm (ICA) is a successful evolutionary algorithm. In this paper, for the first time, Imperialist Competitive Algorithm (ICA) is used for solving automatic clustering problems, called “the automatic clustering using ICA (AC-ICA)”. In the proposed algorithm, in order to increase the exploration ability, the movement of colonies toward the imperialist was changed at the assimilation step. A new method has been provided for changing the number of clusters by combining random and homogeneity based merge-split approach. Furthermore, an efficient method based on density has been proposed for reinitializing empty cluster centers. To use AC-ICA in automatic clustering, the initialization and imperialist competition steps were changed. Based on changes in these two steps, a framework was provided for changing different types of ICA to solve automatic clustering problems. Then, the basic ICA and its three recently developed types, were changed by this framework and their performances in automatic clustering were compared to AC-ICA. The examinations were done on six synthetic and ten real word data sets. The comparison of the proposed algorithm's results with basic ICA, its three recently developed types and several state-of-art automatic clustering methods, shows AC-ICA's superiority in terms of the speed of convergence to the optimal solution and quality of the obtained solution. We also applied our algorithm to a real world application (i.e., face recognition) and the achieved results were acceptable." @default.
- W2892669811 created "2018-10-05" @default.
- W2892669811 creator A5028943091 @default.
- W2892669811 creator A5080554527 @default.
- W2892669811 date "2019-03-01" @default.
- W2892669811 modified "2023-10-16" @default.
- W2892669811 title "A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm" @default.
- W2892669811 cites W1203431557 @default.
- W2892669811 cites W1963675332 @default.
- W2892669811 cites W1964529706 @default.
- W2892669811 cites W1970351663 @default.
- W2892669811 cites W1981566656 @default.
- W2892669811 cites W1983753875 @default.
- W2892669811 cites W1984366963 @default.
- W2892669811 cites W1984909565 @default.
- W2892669811 cites W1985108548 @default.
- W2892669811 cites W1997035197 @default.
- W2892669811 cites W1999075329 @default.
- W2892669811 cites W2000594030 @default.
- W2892669811 cites W2012216972 @default.
- W2892669811 cites W2017065517 @default.
- W2892669811 cites W2026489439 @default.
- W2892669811 cites W2026892527 @default.
- W2892669811 cites W2028880308 @default.
- W2892669811 cites W2029064186 @default.
- W2892669811 cites W2039148220 @default.
- W2892669811 cites W2040929534 @default.
- W2892669811 cites W2047357592 @default.
- W2892669811 cites W2050802111 @default.
- W2892669811 cites W2051224630 @default.
- W2892669811 cites W2056811412 @default.
- W2892669811 cites W2066723975 @default.
- W2892669811 cites W2069129485 @default.
- W2892669811 cites W2087962968 @default.
- W2892669811 cites W2090365396 @default.
- W2892669811 cites W2097612618 @default.
- W2892669811 cites W2109455985 @default.
- W2892669811 cites W2111368672 @default.
- W2892669811 cites W2120529703 @default.
- W2892669811 cites W2132605307 @default.
- W2892669811 cites W2138810473 @default.
- W2892669811 cites W2144307819 @default.
- W2892669811 cites W2153233077 @default.
- W2892669811 cites W2163585301 @default.
- W2892669811 cites W2165835468 @default.
- W2892669811 cites W2170007150 @default.
- W2892669811 cites W2175463425 @default.
- W2892669811 cites W2207731458 @default.
- W2892669811 cites W2219898335 @default.
- W2892669811 cites W2238620239 @default.
- W2892669811 cites W2272844645 @default.
- W2892669811 cites W2273698387 @default.
- W2892669811 cites W2282564320 @default.
- W2892669811 cites W2323180518 @default.
- W2892669811 cites W2350848312 @default.
- W2892669811 cites W2460884160 @default.
- W2892669811 cites W2508674981 @default.
- W2892669811 cites W2509160483 @default.
- W2892669811 cites W2522231769 @default.
- W2892669811 cites W2523650384 @default.
- W2892669811 cites W2580301344 @default.
- W2892669811 cites W2582324877 @default.
- W2892669811 cites W2590749036 @default.
- W2892669811 cites W2733722625 @default.
- W2892669811 cites W2735997113 @default.
- W2892669811 cites W2774779750 @default.
- W2892669811 cites W2888361279 @default.
- W2892669811 cites W4235169531 @default.
- W2892669811 cites W765106422 @default.
- W2892669811 doi "https://doi.org/10.1016/j.eswa.2018.09.050" @default.
- W2892669811 hasPublicationYear "2019" @default.
- W2892669811 type Work @default.
- W2892669811 sameAs 2892669811 @default.
- W2892669811 citedByCount "38" @default.
- W2892669811 countsByYear W28926698112019 @default.
- W2892669811 countsByYear W28926698112020 @default.
- W2892669811 countsByYear W28926698112021 @default.
- W2892669811 countsByYear W28926698112022 @default.
- W2892669811 countsByYear W28926698112023 @default.
- W2892669811 crossrefType "journal-article" @default.
- W2892669811 hasAuthorship W2892669811A5028943091 @default.
- W2892669811 hasAuthorship W2892669811A5080554527 @default.
- W2892669811 hasConcept C101219045 @default.
- W2892669811 hasConcept C104047586 @default.
- W2892669811 hasConcept C109718341 @default.
- W2892669811 hasConcept C11413529 @default.
- W2892669811 hasConcept C114466953 @default.
- W2892669811 hasConcept C124101348 @default.
- W2892669811 hasConcept C153180895 @default.
- W2892669811 hasConcept C154945302 @default.
- W2892669811 hasConcept C17212007 @default.
- W2892669811 hasConcept C197129107 @default.
- W2892669811 hasConcept C199360897 @default.
- W2892669811 hasConcept C23123220 @default.
- W2892669811 hasConcept C33704608 @default.
- W2892669811 hasConcept C41008148 @default.
- W2892669811 hasConcept C4935549 @default.
- W2892669811 hasConcept C73555534 @default.