Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892679931> ?p ?o ?g. }
- W2892679931 endingPage "815" @default.
- W2892679931 startingPage "795" @default.
- W2892679931 abstract "In this study, a novel framework to combine multiple classifiers in an ensemble system is introduced. Here we exploit the concept of information granule to construct granular prototypes for each class on the outputs of an ensemble of base classifiers. In the proposed method, uncertainty in the outputs of the base classifiers on training observations is captured by an interval-based representation. To predict the class label for a new observation, we first determine the distances between the output of the base classifiers for this observation and the class prototypes, then the predicted class label is obtained by choosing the label associated with the shortest distance. In the experimental study, we combine several learning algorithms to build the ensemble system and conduct experiments on the UCI, colon cancer, and selected CLEF2009 datasets. The experimental results demonstrate that the proposed framework outperforms several benchmarked algorithms including two trainable combining methods, i.e., Decision Template and Two Stages Ensemble System, AdaBoost, Random Forest, L2-loss Linear Support Vector Machine, and Decision Tree." @default.
- W2892679931 created "2018-10-05" @default.
- W2892679931 creator A5003799782 @default.
- W2892679931 creator A5011692548 @default.
- W2892679931 creator A5029922259 @default.
- W2892679931 creator A5046941318 @default.
- W2892679931 creator A5091254555 @default.
- W2892679931 date "2018-12-01" @default.
- W2892679931 modified "2023-09-26" @default.
- W2892679931 title "Combining heterogeneous classifiers via granular prototypes" @default.
- W2892679931 cites W1485958089 @default.
- W2892679931 cites W1524157153 @default.
- W2892679931 cites W1534477342 @default.
- W2892679931 cites W1578080815 @default.
- W2892679931 cites W1655845646 @default.
- W2892679931 cites W1755925439 @default.
- W2892679931 cites W1964832275 @default.
- W2892679931 cites W1965275570 @default.
- W2892679931 cites W1988844742 @default.
- W2892679931 cites W1992384122 @default.
- W2892679931 cites W1999772635 @default.
- W2892679931 cites W2004014581 @default.
- W2892679931 cites W2004992275 @default.
- W2892679931 cites W2016133707 @default.
- W2892679931 cites W2016648380 @default.
- W2892679931 cites W2018113971 @default.
- W2892679931 cites W2018456637 @default.
- W2892679931 cites W2058162228 @default.
- W2892679931 cites W2085788725 @default.
- W2892679931 cites W2087684630 @default.
- W2892679931 cites W2089340591 @default.
- W2892679931 cites W2094381401 @default.
- W2892679931 cites W2113242816 @default.
- W2892679931 cites W2115629999 @default.
- W2892679931 cites W2121434426 @default.
- W2892679931 cites W2122892819 @default.
- W2892679931 cites W2133935274 @default.
- W2892679931 cites W2134215770 @default.
- W2892679931 cites W2135107501 @default.
- W2892679931 cites W2147564534 @default.
- W2892679931 cites W2150757437 @default.
- W2892679931 cites W2151509918 @default.
- W2892679931 cites W2153676086 @default.
- W2892679931 cites W2158275940 @default.
- W2892679931 cites W2158869137 @default.
- W2892679931 cites W2160767978 @default.
- W2892679931 cites W2163982943 @default.
- W2892679931 cites W2165335390 @default.
- W2892679931 cites W2443284789 @default.
- W2892679931 cites W2585528949 @default.
- W2892679931 cites W2729784024 @default.
- W2892679931 cites W2752907553 @default.
- W2892679931 cites W2755371172 @default.
- W2892679931 cites W2773675312 @default.
- W2892679931 cites W2778335968 @default.
- W2892679931 cites W2780112348 @default.
- W2892679931 cites W2789553255 @default.
- W2892679931 cites W2805766156 @default.
- W2892679931 cites W28412257 @default.
- W2892679931 cites W2911964244 @default.
- W2892679931 cites W3100344990 @default.
- W2892679931 cites W4212883601 @default.
- W2892679931 cites W843551813 @default.
- W2892679931 doi "https://doi.org/10.1016/j.asoc.2018.09.021" @default.
- W2892679931 hasPublicationYear "2018" @default.
- W2892679931 type Work @default.
- W2892679931 sameAs 2892679931 @default.
- W2892679931 citedByCount "18" @default.
- W2892679931 countsByYear W28926799312019 @default.
- W2892679931 countsByYear W28926799312020 @default.
- W2892679931 countsByYear W28926799312021 @default.
- W2892679931 countsByYear W28926799312023 @default.
- W2892679931 crossrefType "journal-article" @default.
- W2892679931 hasAuthorship W2892679931A5003799782 @default.
- W2892679931 hasAuthorship W2892679931A5011692548 @default.
- W2892679931 hasAuthorship W2892679931A5029922259 @default.
- W2892679931 hasAuthorship W2892679931A5046941318 @default.
- W2892679931 hasAuthorship W2892679931A5091254555 @default.
- W2892679931 hasBestOaLocation W28926799312 @default.
- W2892679931 hasConcept C106135958 @default.
- W2892679931 hasConcept C119857082 @default.
- W2892679931 hasConcept C12267149 @default.
- W2892679931 hasConcept C123860398 @default.
- W2892679931 hasConcept C124101348 @default.
- W2892679931 hasConcept C134306372 @default.
- W2892679931 hasConcept C141404830 @default.
- W2892679931 hasConcept C153180895 @default.
- W2892679931 hasConcept C154945302 @default.
- W2892679931 hasConcept C165696696 @default.
- W2892679931 hasConcept C169258074 @default.
- W2892679931 hasConcept C2777212361 @default.
- W2892679931 hasConcept C33923547 @default.
- W2892679931 hasConcept C38652104 @default.
- W2892679931 hasConcept C40651066 @default.
- W2892679931 hasConcept C41008148 @default.
- W2892679931 hasConcept C42058472 @default.
- W2892679931 hasConcept C45942800 @default.
- W2892679931 hasConcept C84525736 @default.