Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892681410> ?p ?o ?g. }
- W2892681410 endingPage "6155" @default.
- W2892681410 startingPage "6141" @default.
- W2892681410 abstract "Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na + /Ca 2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. Abstract The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na + /Ca 2+ exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10 −5 ± 2.2 × 10 −6 to 2.8 × 10 −5 ± 4.3 × 10 −6 arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue." @default.
- W2892681410 created "2018-10-05" @default.
- W2892681410 creator A5002779808 @default.
- W2892681410 creator A5006088912 @default.
- W2892681410 creator A5016743477 @default.
- W2892681410 creator A5019128243 @default.
- W2892681410 creator A5023962912 @default.
- W2892681410 creator A5029855122 @default.
- W2892681410 creator A5037960976 @default.
- W2892681410 creator A5049296792 @default.
- W2892681410 creator A5052719068 @default.
- W2892681410 creator A5074321473 @default.
- W2892681410 creator A5085088784 @default.
- W2892681410 date "2018-10-13" @default.
- W2892681410 modified "2023-09-27" @default.
- W2892681410 title "TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome" @default.
- W2892681410 cites W1508695273 @default.
- W2892681410 cites W1884696473 @default.
- W2892681410 cites W1974966930 @default.
- W2892681410 cites W1981782700 @default.
- W2892681410 cites W1983563548 @default.
- W2892681410 cites W1985601140 @default.
- W2892681410 cites W1991586657 @default.
- W2892681410 cites W1992880616 @default.
- W2892681410 cites W1992917791 @default.
- W2892681410 cites W2001247904 @default.
- W2892681410 cites W2004781289 @default.
- W2892681410 cites W2005960396 @default.
- W2892681410 cites W2013394336 @default.
- W2892681410 cites W2019114848 @default.
- W2892681410 cites W2032934479 @default.
- W2892681410 cites W2037417862 @default.
- W2892681410 cites W2040900595 @default.
- W2892681410 cites W2043512096 @default.
- W2892681410 cites W2046052800 @default.
- W2892681410 cites W2046185560 @default.
- W2892681410 cites W2048749547 @default.
- W2892681410 cites W2065134948 @default.
- W2892681410 cites W2067126679 @default.
- W2892681410 cites W2074288112 @default.
- W2892681410 cites W2075011348 @default.
- W2892681410 cites W2082276159 @default.
- W2892681410 cites W2083635067 @default.
- W2892681410 cites W2084584963 @default.
- W2892681410 cites W2085774451 @default.
- W2892681410 cites W2088386461 @default.
- W2892681410 cites W2092726461 @default.
- W2892681410 cites W2100425203 @default.
- W2892681410 cites W2100522812 @default.
- W2892681410 cites W2102254218 @default.
- W2892681410 cites W2105904651 @default.
- W2892681410 cites W2115402966 @default.
- W2892681410 cites W2115599237 @default.
- W2892681410 cites W2118074491 @default.
- W2892681410 cites W2134685378 @default.
- W2892681410 cites W2142946819 @default.
- W2892681410 cites W2149796373 @default.
- W2892681410 cites W2155944121 @default.
- W2892681410 cites W2158022157 @default.
- W2892681410 cites W2160334300 @default.
- W2892681410 cites W2168341834 @default.
- W2892681410 cites W2168473939 @default.
- W2892681410 cites W2317266501 @default.
- W2892681410 cites W2375838979 @default.
- W2892681410 cites W2614153041 @default.
- W2892681410 cites W4233293499 @default.
- W2892681410 cites W4235310760 @default.
- W2892681410 doi "https://doi.org/10.1113/jp276508" @default.
- W2892681410 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6292813" @default.
- W2892681410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30259525" @default.
- W2892681410 hasPublicationYear "2018" @default.
- W2892681410 type Work @default.
- W2892681410 sameAs 2892681410 @default.
- W2892681410 citedByCount "18" @default.
- W2892681410 countsByYear W28926814102018 @default.
- W2892681410 countsByYear W28926814102019 @default.
- W2892681410 countsByYear W28926814102020 @default.
- W2892681410 countsByYear W28926814102021 @default.
- W2892681410 countsByYear W28926814102022 @default.
- W2892681410 crossrefType "journal-article" @default.
- W2892681410 hasAuthorship W2892681410A5002779808 @default.
- W2892681410 hasAuthorship W2892681410A5006088912 @default.
- W2892681410 hasAuthorship W2892681410A5016743477 @default.
- W2892681410 hasAuthorship W2892681410A5019128243 @default.
- W2892681410 hasAuthorship W2892681410A5023962912 @default.
- W2892681410 hasAuthorship W2892681410A5029855122 @default.
- W2892681410 hasAuthorship W2892681410A5037960976 @default.
- W2892681410 hasAuthorship W2892681410A5049296792 @default.
- W2892681410 hasAuthorship W2892681410A5052719068 @default.
- W2892681410 hasAuthorship W2892681410A5074321473 @default.
- W2892681410 hasAuthorship W2892681410A5085088784 @default.
- W2892681410 hasBestOaLocation W28926814101 @default.
- W2892681410 hasConcept C126322002 @default.
- W2892681410 hasConcept C164705383 @default.
- W2892681410 hasConcept C2777495988 @default.
- W2892681410 hasConcept C2777953023 @default.
- W2892681410 hasConcept C2778542873 @default.
- W2892681410 hasConcept C2778642235 @default.