Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892683542> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2892683542 endingPage "153" @default.
- W2892683542 startingPage "146" @default.
- W2892683542 abstract "The ordinary least square estimates of multiple regression parameters is characterized by low bias and large variance leading to poor performance in both prediction and interpretation of the regression model under study. Penalized regression techniques represented in ridge, lasso and elastic net were used to improve the ordinary least square estimates performance. Categorical regression algorithm provides efficient procedure for computing the regression coefficients of ridge, lasso, and elastic Net models. The statistical analysis was done on ten single nucleotide polymorphisms simulated data with strong linkage disequilibrium as predictors of a continuous phenotypic trait. The coefficients were 39%, 34%, 29% and 28% for ridge, elastic net, lasso and stepwise multiple regression methods, respectively. The current study finished that ridge regression followed by elastic net regression performed better than the other regression methods." @default.
- W2892683542 created "2018-10-05" @default.
- W2892683542 creator A5048178037 @default.
- W2892683542 creator A5072616626 @default.
- W2892683542 creator A5076345030 @default.
- W2892683542 creator A5087489623 @default.
- W2892683542 date "2018-06-01" @default.
- W2892683542 modified "2023-09-26" @default.
- W2892683542 title "Modeling of Biological Data Based on Regression Methods" @default.
- W2892683542 doi "https://doi.org/10.21608/zvjz.2018.14387" @default.
- W2892683542 hasPublicationYear "2018" @default.
- W2892683542 type Work @default.
- W2892683542 sameAs 2892683542 @default.
- W2892683542 citedByCount "0" @default.
- W2892683542 crossrefType "journal-article" @default.
- W2892683542 hasAuthorship W2892683542A5048178037 @default.
- W2892683542 hasAuthorship W2892683542A5072616626 @default.
- W2892683542 hasAuthorship W2892683542A5076345030 @default.
- W2892683542 hasAuthorship W2892683542A5087489623 @default.
- W2892683542 hasBestOaLocation W28926835421 @default.
- W2892683542 hasConcept C105795698 @default.
- W2892683542 hasConcept C119857082 @default.
- W2892683542 hasConcept C152877465 @default.
- W2892683542 hasConcept C33923547 @default.
- W2892683542 hasConcept C41008148 @default.
- W2892683542 hasConcept C83546350 @default.
- W2892683542 hasConceptScore W2892683542C105795698 @default.
- W2892683542 hasConceptScore W2892683542C119857082 @default.
- W2892683542 hasConceptScore W2892683542C152877465 @default.
- W2892683542 hasConceptScore W2892683542C33923547 @default.
- W2892683542 hasConceptScore W2892683542C41008148 @default.
- W2892683542 hasConceptScore W2892683542C83546350 @default.
- W2892683542 hasIssue "2" @default.
- W2892683542 hasLocation W28926835421 @default.
- W2892683542 hasOpenAccess W2892683542 @default.
- W2892683542 hasPrimaryLocation W28926835421 @default.
- W2892683542 hasRelatedWork W1980588930 @default.
- W2892683542 hasRelatedWork W2060912888 @default.
- W2892683542 hasRelatedWork W2062105804 @default.
- W2892683542 hasRelatedWork W2080727847 @default.
- W2892683542 hasRelatedWork W2119696881 @default.
- W2892683542 hasRelatedWork W2374407646 @default.
- W2892683542 hasRelatedWork W2375721435 @default.
- W2892683542 hasRelatedWork W4290879003 @default.
- W2892683542 hasRelatedWork W4366821931 @default.
- W2892683542 hasRelatedWork W2738033194 @default.
- W2892683542 hasVolume "46" @default.
- W2892683542 isParatext "false" @default.
- W2892683542 isRetracted "false" @default.
- W2892683542 magId "2892683542" @default.
- W2892683542 workType "article" @default.