Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892684501> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2892684501 abstract "Automated theorem provers are computer programs that check whether a logical conjecture follows from a set of logical statements. The conjecture and the statements are expressed in the language of some formal logic, such as first-order logic. Theorem provers for first-order logic have been used for automation in proof assistants, verification of programs, static analysis of networks, and other purposes. However, the efficient usage of these provers remains challenging. One of the challenges is the complexity of translating domain problems to first-order logic. Not only can such translation be cumbersome due to semantic differences between the domain and the logic, but it might inadvertently result in problems that provers cannot easily handle. The work presented in the thesis addresses this challenge by developing an extension of first-order logic named FOOL. FOOL contains syntactical features of programming languages and more expressive logics, is friendly for translation of problems from various domains, and can be efficiently supported by existing theorem provers. We describe the syntax and semantics of FOOL and present a simple translation from FOOL to plain first-order logic. We describe an efficient clausal normal form transformation algorithm for FOOL and based on it implement a support for FOOL in the Vampire theorem prover. We illustrate the efficient use of FOOL for program verification by describing a concise encoding of next state relations of imperative programs in FOOL. We show a usage of features of FOOL in problems of static analysis of networks. We demonstrate the efficiency of automated theorem proving in FOOL with an extensive set of experiments. In these experiments we compare the performance of Vampire on a large collection of problems from various sources translated to FOOL and ordinary first-order logic. Finally, we fix the syntax for FOOL in TPTP, the standard language of first-order theorem provers." @default.
- W2892684501 created "2018-10-05" @default.
- W2892684501 creator A5082482973 @default.
- W2892684501 date "2018-01-01" @default.
- W2892684501 modified "2023-09-24" @default.
- W2892684501 title "Automated Theorem Proving with Extensions of First-Order Logic" @default.
- W2892684501 hasPublicationYear "2018" @default.
- W2892684501 type Work @default.
- W2892684501 sameAs 2892684501 @default.
- W2892684501 citedByCount "0" @default.
- W2892684501 crossrefType "journal-article" @default.
- W2892684501 hasAuthorship W2892684501A5082482973 @default.
- W2892684501 hasConcept C102993220 @default.
- W2892684501 hasConcept C108710211 @default.
- W2892684501 hasConcept C11413529 @default.
- W2892684501 hasConcept C128838566 @default.
- W2892684501 hasConcept C134306372 @default.
- W2892684501 hasConcept C13766981 @default.
- W2892684501 hasConcept C159718280 @default.
- W2892684501 hasConcept C169896238 @default.
- W2892684501 hasConcept C184337299 @default.
- W2892684501 hasConcept C195344581 @default.
- W2892684501 hasConcept C199360897 @default.
- W2892684501 hasConcept C203265346 @default.
- W2892684501 hasConcept C206880738 @default.
- W2892684501 hasConcept C2524010 @default.
- W2892684501 hasConcept C33923547 @default.
- W2892684501 hasConcept C36503486 @default.
- W2892684501 hasConcept C41008148 @default.
- W2892684501 hasConcept C79678938 @default.
- W2892684501 hasConcept C80444323 @default.
- W2892684501 hasConceptScore W2892684501C102993220 @default.
- W2892684501 hasConceptScore W2892684501C108710211 @default.
- W2892684501 hasConceptScore W2892684501C11413529 @default.
- W2892684501 hasConceptScore W2892684501C128838566 @default.
- W2892684501 hasConceptScore W2892684501C134306372 @default.
- W2892684501 hasConceptScore W2892684501C13766981 @default.
- W2892684501 hasConceptScore W2892684501C159718280 @default.
- W2892684501 hasConceptScore W2892684501C169896238 @default.
- W2892684501 hasConceptScore W2892684501C184337299 @default.
- W2892684501 hasConceptScore W2892684501C195344581 @default.
- W2892684501 hasConceptScore W2892684501C199360897 @default.
- W2892684501 hasConceptScore W2892684501C203265346 @default.
- W2892684501 hasConceptScore W2892684501C206880738 @default.
- W2892684501 hasConceptScore W2892684501C2524010 @default.
- W2892684501 hasConceptScore W2892684501C33923547 @default.
- W2892684501 hasConceptScore W2892684501C36503486 @default.
- W2892684501 hasConceptScore W2892684501C41008148 @default.
- W2892684501 hasConceptScore W2892684501C79678938 @default.
- W2892684501 hasConceptScore W2892684501C80444323 @default.
- W2892684501 hasLocation W28926845011 @default.
- W2892684501 hasOpenAccess W2892684501 @default.
- W2892684501 hasPrimaryLocation W28926845011 @default.
- W2892684501 hasRelatedWork W1495147690 @default.
- W2892684501 hasRelatedWork W1512430070 @default.
- W2892684501 hasRelatedWork W1523013478 @default.
- W2892684501 hasRelatedWork W1557830359 @default.
- W2892684501 hasRelatedWork W1573627012 @default.
- W2892684501 hasRelatedWork W1979623128 @default.
- W2892684501 hasRelatedWork W2062196307 @default.
- W2892684501 hasRelatedWork W2080551664 @default.
- W2892684501 hasRelatedWork W2133430687 @default.
- W2892684501 hasRelatedWork W2136962984 @default.
- W2892684501 hasRelatedWork W2142877099 @default.
- W2892684501 hasRelatedWork W2230407200 @default.
- W2892684501 hasRelatedWork W2400409747 @default.
- W2892684501 hasRelatedWork W245122890 @default.
- W2892684501 hasRelatedWork W2483392883 @default.
- W2892684501 hasRelatedWork W2583512742 @default.
- W2892684501 hasRelatedWork W2767224817 @default.
- W2892684501 hasRelatedWork W2802944976 @default.
- W2892684501 hasRelatedWork W2943553270 @default.
- W2892684501 hasRelatedWork W3111943817 @default.
- W2892684501 isParatext "false" @default.
- W2892684501 isRetracted "false" @default.
- W2892684501 magId "2892684501" @default.
- W2892684501 workType "article" @default.