Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892686211> ?p ?o ?g. }
- W2892686211 endingPage "207" @default.
- W2892686211 startingPage "195" @default.
- W2892686211 abstract "Lipid-based nanoparticles (LNPs) have been developed to address the transport and uptake barriers to enhance the delivery efficiency of plasmid DNA therapeutics. In these systems, plasmid DNA can be encapsulated through condensation by a cationic lipid to form lipo-complexes, or polycation following complexation into cationic liposomes to form lipo-polyplexes. Conventional methods for achieving these two DNA-delivering LNP vehicles suffer from significant batch-to-batch variation, poor scalability and complicated multi-step preparation procedures. Resultant nanoparticles often have uncontrollable size and surface charge with wide distribution, and poor stability when exposed to physiological media. Here we report a single-step flash nanocomplexation (FNC) process using turbulent mixing to prepare uniform lipo-complex or lipo-polyplex LNPs in a scalable manner, demonstrating excellent control over the nanoparticle size (from 40 to several hundred nm) and surface charge, with narrow size distribution. The FNC-produced LNPs could be purified and concentrated using a tangential flow filtration (TFF) process in a scalable manner. An optimized formulation of purified lipo-complex LNPs (DOTAP/Chol/DNA, 45 nm) showed significantly higher (5-fold in the lungs and 4-fold in the liver) transgene expression activity upon oral dosage than lipo-polyplex LNPs (DPPC/Chol/lPEI/DNA, 75 nm) or lPEI/DNA nanoparticles (43 nm). Repeated dosing (4 days, 150 μg/day) of the lipo-complex LNPs sustained the transgene activity over a period of one week without detectable toxicity in major organs, suggesting its potential for clinical translation. STATEMENT OF SIGNIFICANCE: We report a new method to prepare uniform size-controlled lipid-based DNA-loaded nanoparticles by turbulent mixing delivered by a multi-inlet vortex mixer. Two distinct compositions were successfully prepared: (1) lipo-complexes, through condensation of the plasmid DNA by cationic lipids; (2) lipo-polyplexes, by encapsulation of DNA/PEI together with neutral lipids. Comparing with conventional methods, which use multi-step processes with high batch-to-batch variations and poor control over nanoparticle characteristics, this method offers a single-step, continuous and reproducible assembly methodology that would promote the translation of such gene medicine products. Effective purification and concentration of nanoparticles were achieved by adopted tangential flow filtration method. Following oral gavage in mice, the lipo-complex nanoparticles showed the highest level of transgene expression in the lung and liver." @default.
- W2892686211 created "2018-10-05" @default.
- W2892686211 creator A5008433347 @default.
- W2892686211 creator A5009834570 @default.
- W2892686211 creator A5025820330 @default.
- W2892686211 creator A5031327240 @default.
- W2892686211 creator A5039838088 @default.
- W2892686211 creator A5039941326 @default.
- W2892686211 creator A5051229707 @default.
- W2892686211 creator A5052880510 @default.
- W2892686211 creator A5077613732 @default.
- W2892686211 creator A5079425473 @default.
- W2892686211 date "2018-11-01" @default.
- W2892686211 modified "2023-10-18" @default.
- W2892686211 title "Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery" @default.
- W2892686211 cites W2007146866 @default.
- W2892686211 cites W2008801342 @default.
- W2892686211 cites W2012196034 @default.
- W2892686211 cites W2029428477 @default.
- W2892686211 cites W2030925567 @default.
- W2892686211 cites W2039551908 @default.
- W2892686211 cites W2074782193 @default.
- W2892686211 cites W2077908415 @default.
- W2892686211 cites W2080648192 @default.
- W2892686211 cites W2103908542 @default.
- W2892686211 cites W2143463421 @default.
- W2892686211 cites W2219182836 @default.
- W2892686211 cites W2267205758 @default.
- W2892686211 cites W2300713937 @default.
- W2892686211 cites W2521078391 @default.
- W2892686211 cites W2537272949 @default.
- W2892686211 cites W2599741499 @default.
- W2892686211 cites W2606152849 @default.
- W2892686211 cites W2613973271 @default.
- W2892686211 cites W2789799389 @default.
- W2892686211 cites W2802211855 @default.
- W2892686211 doi "https://doi.org/10.1016/j.actbio.2018.09.047" @default.
- W2892686211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30267888" @default.
- W2892686211 hasPublicationYear "2018" @default.
- W2892686211 type Work @default.
- W2892686211 sameAs 2892686211 @default.
- W2892686211 citedByCount "42" @default.
- W2892686211 countsByYear W28926862112019 @default.
- W2892686211 countsByYear W28926862112020 @default.
- W2892686211 countsByYear W28926862112021 @default.
- W2892686211 countsByYear W28926862112022 @default.
- W2892686211 countsByYear W28926862112023 @default.
- W2892686211 crossrefType "journal-article" @default.
- W2892686211 hasAuthorship W2892686211A5008433347 @default.
- W2892686211 hasAuthorship W2892686211A5009834570 @default.
- W2892686211 hasAuthorship W2892686211A5025820330 @default.
- W2892686211 hasAuthorship W2892686211A5031327240 @default.
- W2892686211 hasAuthorship W2892686211A5039838088 @default.
- W2892686211 hasAuthorship W2892686211A5039941326 @default.
- W2892686211 hasAuthorship W2892686211A5051229707 @default.
- W2892686211 hasAuthorship W2892686211A5052880510 @default.
- W2892686211 hasAuthorship W2892686211A5077613732 @default.
- W2892686211 hasAuthorship W2892686211A5079425473 @default.
- W2892686211 hasConcept C104317684 @default.
- W2892686211 hasConcept C12554922 @default.
- W2892686211 hasConcept C147789679 @default.
- W2892686211 hasConcept C150903083 @default.
- W2892686211 hasConcept C155672457 @default.
- W2892686211 hasConcept C155887181 @default.
- W2892686211 hasConcept C171250308 @default.
- W2892686211 hasConcept C185154212 @default.
- W2892686211 hasConcept C185592680 @default.
- W2892686211 hasConcept C192562407 @default.
- W2892686211 hasConcept C207001950 @default.
- W2892686211 hasConcept C2780358262 @default.
- W2892686211 hasConcept C54009773 @default.
- W2892686211 hasConcept C552990157 @default.
- W2892686211 hasConcept C55493867 @default.
- W2892686211 hasConcept C86803240 @default.
- W2892686211 hasConceptScore W2892686211C104317684 @default.
- W2892686211 hasConceptScore W2892686211C12554922 @default.
- W2892686211 hasConceptScore W2892686211C147789679 @default.
- W2892686211 hasConceptScore W2892686211C150903083 @default.
- W2892686211 hasConceptScore W2892686211C155672457 @default.
- W2892686211 hasConceptScore W2892686211C155887181 @default.
- W2892686211 hasConceptScore W2892686211C171250308 @default.
- W2892686211 hasConceptScore W2892686211C185154212 @default.
- W2892686211 hasConceptScore W2892686211C185592680 @default.
- W2892686211 hasConceptScore W2892686211C192562407 @default.
- W2892686211 hasConceptScore W2892686211C207001950 @default.
- W2892686211 hasConceptScore W2892686211C2780358262 @default.
- W2892686211 hasConceptScore W2892686211C54009773 @default.
- W2892686211 hasConceptScore W2892686211C552990157 @default.
- W2892686211 hasConceptScore W2892686211C55493867 @default.
- W2892686211 hasConceptScore W2892686211C86803240 @default.
- W2892686211 hasFunder F4320313609 @default.
- W2892686211 hasFunder F4320321001 @default.
- W2892686211 hasFunder F4320321921 @default.
- W2892686211 hasLocation W28926862111 @default.
- W2892686211 hasLocation W28926862112 @default.
- W2892686211 hasOpenAccess W2892686211 @default.
- W2892686211 hasPrimaryLocation W28926862111 @default.
- W2892686211 hasRelatedWork W1966895752 @default.