Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892694839> ?p ?o ?g. }
- W2892694839 abstract "The diagnosis of Alzheimer's disease (AD), especially in the early stage, is still not very reliable and the development of new diagnosis tools is desirable. A diagnosis based fMRI is a suitable candidate, since fMRI is non-invasive, readily available, and indirectly measures synaptic dysfunction, which can be observed even at the earliest stages of AD. However, previous attempts to analyze graph properties of resting state fMRI data are contradictory, presumably caused by methodological differences in graph construction. This comprises two steps: clustering the voxels of the functional image to define the nodes of the graph, and calculating the graph's edge weights based on a functional connectivity measure of the average cluster activities. A variety of methods are available for each step, but the robustness of results to method choice, and the suitability of the methods to support a diagnostic tool, are largely unknown. To address this issue, we employ a range of commonly and rarely used clustering and edge definition methods and analyze their graph theoretic measures (graph weight, shortest path length, clustering coefficient, and weighted degree distribution and modularity) on a small data set of 26 healthy controls, 16 mild cognitive impairment and 14 Alzheimer’s disease. We examine the results with respect to statistical significance of the mean difference in graph properties, the sensitivity of the results to model and parameter choices, and relative diagnostic power based on both a statistical model and support vector machines. We find that different combinations of graph construction techniques yield contradicting, but statistically significant, relations of graph properties between health conditions, explaining the discrepancy across previous studies, but casting doubt on such analyses as a method to gain insight into disease effects. The production of significant differences in mean graph properties turns out not to be a good predictor of future diagnostic capacity. Highest predictive power, expressed by largest negative surprise values, are achieved for both atlas-driven and data-driven clustering (Ward clustering), as long as graphs are small and clusters large, in combination with edge definitions based on correlations and mutual information transfer." @default.
- W2892694839 created "2018-10-05" @default.
- W2892694839 creator A5000291248 @default.
- W2892694839 creator A5006315449 @default.
- W2892694839 creator A5026849244 @default.
- W2892694839 creator A5034739335 @default.
- W2892694839 creator A5038187721 @default.
- W2892694839 creator A5042872228 @default.
- W2892694839 creator A5059348521 @default.
- W2892694839 creator A5062516261 @default.
- W2892694839 creator A5067810690 @default.
- W2892694839 creator A5070443343 @default.
- W2892694839 creator A5073083912 @default.
- W2892694839 creator A5078140591 @default.
- W2892694839 date "2018-09-28" @default.
- W2892694839 modified "2023-10-17" @default.
- W2892694839 title "On the Extraction and Analysis of Graphs From Resting-State fMRI to Support a Correct and Robust Diagnostic Tool for Alzheimer's Disease" @default.
- W2892694839 cites W143174683 @default.
- W2892694839 cites W1591163814 @default.
- W2892694839 cites W1888071555 @default.
- W2892694839 cites W1971404642 @default.
- W2892694839 cites W1978408307 @default.
- W2892694839 cites W1983345514 @default.
- W2892694839 cites W1987387046 @default.
- W2892694839 cites W1988242404 @default.
- W2892694839 cites W1991933335 @default.
- W2892694839 cites W2003131754 @default.
- W2892694839 cites W2004700815 @default.
- W2892694839 cites W2007979658 @default.
- W2892694839 cites W2009650955 @default.
- W2892694839 cites W2011541551 @default.
- W2892694839 cites W2014441541 @default.
- W2892694839 cites W2017987256 @default.
- W2892694839 cites W2018735337 @default.
- W2892694839 cites W2029552385 @default.
- W2892694839 cites W2031188761 @default.
- W2892694839 cites W2034630192 @default.
- W2892694839 cites W2041782669 @default.
- W2892694839 cites W2046035753 @default.
- W2892694839 cites W2052644075 @default.
- W2892694839 cites W2058046532 @default.
- W2892694839 cites W2060442802 @default.
- W2892694839 cites W2060705109 @default.
- W2892694839 cites W2070854761 @default.
- W2892694839 cites W2070949043 @default.
- W2892694839 cites W2071881327 @default.
- W2892694839 cites W2074274706 @default.
- W2892694839 cites W2079634169 @default.
- W2892694839 cites W2093503117 @default.
- W2892694839 cites W2095245818 @default.
- W2892694839 cites W2101135654 @default.
- W2892694839 cites W2101940364 @default.
- W2892694839 cites W2113952909 @default.
- W2892694839 cites W2117621792 @default.
- W2892694839 cites W2118987707 @default.
- W2892694839 cites W2128058309 @default.
- W2892694839 cites W2129497119 @default.
- W2892694839 cites W2131681506 @default.
- W2892694839 cites W2136145485 @default.
- W2892694839 cites W2136148445 @default.
- W2892694839 cites W2136573752 @default.
- W2892694839 cites W2138386751 @default.
- W2892694839 cites W2138991775 @default.
- W2892694839 cites W2142367912 @default.
- W2892694839 cites W2148726987 @default.
- W2892694839 cites W2302947869 @default.
- W2892694839 cites W2473821704 @default.
- W2892694839 cites W2492099631 @default.
- W2892694839 cites W2492675437 @default.
- W2892694839 cites W2557111525 @default.
- W2892694839 cites W2592119445 @default.
- W2892694839 cites W2607316180 @default.
- W2892694839 cites W2623603318 @default.
- W2892694839 cites W2731569598 @default.
- W2892694839 cites W2781583747 @default.
- W2892694839 cites W2952031738 @default.
- W2892694839 cites W2962919115 @default.
- W2892694839 cites W2977883299 @default.
- W2892694839 cites W2993383518 @default.
- W2892694839 cites W39879652 @default.
- W2892694839 cites W4235770099 @default.
- W2892694839 cites W4237874513 @default.
- W2892694839 cites W4299551239 @default.
- W2892694839 doi "https://doi.org/10.3389/fnins.2018.00528" @default.
- W2892694839 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6172342" @default.
- W2892694839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30323734" @default.
- W2892694839 hasPublicationYear "2018" @default.
- W2892694839 type Work @default.
- W2892694839 sameAs 2892694839 @default.
- W2892694839 citedByCount "4" @default.
- W2892694839 countsByYear W28926948392019 @default.
- W2892694839 countsByYear W28926948392022 @default.
- W2892694839 countsByYear W28926948392023 @default.
- W2892694839 crossrefType "journal-article" @default.
- W2892694839 hasAuthorship W2892694839A5000291248 @default.
- W2892694839 hasAuthorship W2892694839A5006315449 @default.
- W2892694839 hasAuthorship W2892694839A5026849244 @default.
- W2892694839 hasAuthorship W2892694839A5034739335 @default.
- W2892694839 hasAuthorship W2892694839A5038187721 @default.
- W2892694839 hasAuthorship W2892694839A5042872228 @default.